- #1
zenterix
- 702
- 84
- Homework Statement
- Two blocks of the same metal are of the same size but are at different temperatures ##T_1## and ##T_2##. These blocks of metal are brought together and allowed to come to the same temperature.
- Relevant Equations
- Show that the entropy change is given by
$$\Delta S=C_P\ln{\left [ \frac{(T_1+T_2)^2}{4T_1T_2} \right ]}$$
if ##C_P## is constant.
Here is a way to solve the problem.
Since ##dq_1=-dq_2## then
$$\int_{T_1}^T C_PdT=-\int_{T_2}^T C_PdT\tag{1}$$
$$\implies T=\frac{T_1+T_2}{2}\tag{2}$$
$$dq_1=C_PdT\tag{3}$$
$$dS_1=\frac{dq_1}{T}=\frac{C_P}{T}dT\tag{4}$$
$$\Delta S_1=\int_{T_1}^T\frac{C_P}{T}dT=C_P\ln{\frac{T}{T_1}}\tag{5}$$
$$dq_2=C_PdT\tag{6}$$
$$dS_2=\frac{dq_2}{T}=\frac{C_P}{T}dT\tag{7}$$
$$\Delta S_1=\int_{T_2}^T\frac{C_P}{T}dT=C_P\ln{\frac{T}{T_2}}\tag{8}$$
$$\Delta S_{sys}=\Delta S_1+\Delta S_2=C_P\ln{\frac{T^2}{T_1T_2}}=C_P\ln{\frac{(T_1+T_2)^2}{4T_1T_2}}\tag{9}$$
My question is about solving it a different way, if possible.
Can we write
$$dS_{sys}=dS_1+dS_2=\frac{dq_1}{T_1}+\frac{dq_2}{T_2}\tag{10}$$
$$=\frac{dq_1}{T_1}-\frac{dq_1}{T_2}\tag{11}$$
is this expression correct?
I am really not sure. If it is, I am not sure what it means to integrate the right-hand side. In particular, what would the limits of integration be?
Since ##dq_1=-dq_2## then
$$\int_{T_1}^T C_PdT=-\int_{T_2}^T C_PdT\tag{1}$$
$$\implies T=\frac{T_1+T_2}{2}\tag{2}$$
$$dq_1=C_PdT\tag{3}$$
$$dS_1=\frac{dq_1}{T}=\frac{C_P}{T}dT\tag{4}$$
$$\Delta S_1=\int_{T_1}^T\frac{C_P}{T}dT=C_P\ln{\frac{T}{T_1}}\tag{5}$$
$$dq_2=C_PdT\tag{6}$$
$$dS_2=\frac{dq_2}{T}=\frac{C_P}{T}dT\tag{7}$$
$$\Delta S_1=\int_{T_2}^T\frac{C_P}{T}dT=C_P\ln{\frac{T}{T_2}}\tag{8}$$
$$\Delta S_{sys}=\Delta S_1+\Delta S_2=C_P\ln{\frac{T^2}{T_1T_2}}=C_P\ln{\frac{(T_1+T_2)^2}{4T_1T_2}}\tag{9}$$
My question is about solving it a different way, if possible.
Can we write
$$dS_{sys}=dS_1+dS_2=\frac{dq_1}{T_1}+\frac{dq_2}{T_2}\tag{10}$$
$$=\frac{dq_1}{T_1}-\frac{dq_1}{T_2}\tag{11}$$
is this expression correct?
I am really not sure. If it is, I am not sure what it means to integrate the right-hand side. In particular, what would the limits of integration be?