- #1
arrow27
- 7
- 0
\begin{array}{l}
u = u(x,y) \\
v = v(x,y) \\
and\\
{u_x} + 4{v_y} = 0 \\
{v_x} + 9{u_y} = 0 \\
with\ the\ initial\ conditions \\
u(x,0) = 2x _(3)\\
v(x,0) = 3x _(4)\\
\end{array}
Easy,
[tex]u_{xx}-36u_{yy}=0[/tex] and [tex]v_{xx}-36v_{yy}=0[/tex]
General solution [tex]u\left ( x,y \right )=h\left ( x+6y \right )+g\left ( y-6x \right )[/tex]
Similar,
[tex]v\left ( x,y \right )=h\left ( x+6y \right )+g\left ( y-6x \right )[/tex]
From (3) : [tex]2x=h\left ( 6x \right )+g\left ( -6x \right )[/tex]
From (4) : [tex]3x=h\left ( 6x \right )+g\left ( -6x \right )[/tex]
How to continue?
u = u(x,y) \\
v = v(x,y) \\
and\\
{u_x} + 4{v_y} = 0 \\
{v_x} + 9{u_y} = 0 \\
with\ the\ initial\ conditions \\
u(x,0) = 2x _(3)\\
v(x,0) = 3x _(4)\\
\end{array}
Easy,
[tex]u_{xx}-36u_{yy}=0[/tex] and [tex]v_{xx}-36v_{yy}=0[/tex]
General solution [tex]u\left ( x,y \right )=h\left ( x+6y \right )+g\left ( y-6x \right )[/tex]
Similar,
[tex]v\left ( x,y \right )=h\left ( x+6y \right )+g\left ( y-6x \right )[/tex]
From (3) : [tex]2x=h\left ( 6x \right )+g\left ( -6x \right )[/tex]
From (4) : [tex]3x=h\left ( 6x \right )+g\left ( -6x \right )[/tex]
How to continue?
Last edited by a moderator: