- #1
karush
Gold Member
MHB
- 3,269
- 5
$$\int \cos^2 \left({x}\right)\sin^3 \left({x}\right)dx$$
$$-\int\cos^2 \left({x}\right)\left(1-\cos^2 \left({x}\right)\right)\sin\left({x}\right)dx
=-\int\left(\cos^2 \left({x}\right)-\cos^4\left({x}\right)\right)\sin\left({x}\right)dx $$
$$u=\cos\left({x}\right)\ \ du=-\sin\left({x}\right)dx $$
So
$$-\int\left({u}^{2}-{u}^{4}\right)du$$
So far?
$$-\int\cos^2 \left({x}\right)\left(1-\cos^2 \left({x}\right)\right)\sin\left({x}\right)dx
=-\int\left(\cos^2 \left({x}\right)-\cos^4\left({x}\right)\right)\sin\left({x}\right)dx $$
$$u=\cos\left({x}\right)\ \ du=-\sin\left({x}\right)dx $$
So
$$-\int\left({u}^{2}-{u}^{4}\right)du$$
So far?