- #1
karush
Gold Member
MHB
- 3,269
- 5
$\tiny{242.2q.3a}$
\begin{align}\displaystyle
I_{3a}&=\int_2^{4} \frac{1}{x(ln \, x)^2} \, dx\\
u&=\ln \, x \therefore du=\frac{1}{x}\, dx
\end{align}
$\textsf{substitute $\ln \, x =u$}$
\begin{align}\displaystyle
I_u&=\int_2^{4} \frac{1}{u^2} \, du\\
&=-\left[\frac{1}{u}\right]^{4}_2 \\
%&=\frac{1}{u} \right|_2-\frac{1}{u} \right|^{4}\\
\end{align}
$\textsf{back substitute $u=\ln \, x $}$
\begin{align}\displaystyle
&I_{3a}=\frac{1}{\ln \, 2 }
-\frac{1}{2\ln \, 2 }
\end{align}
$\textit{think this ok, wasn't sure on simplifying}$
\begin{align}\displaystyle
I_{3a}&=\int_2^{4} \frac{1}{x(ln \, x)^2} \, dx\\
u&=\ln \, x \therefore du=\frac{1}{x}\, dx
\end{align}
$\textsf{substitute $\ln \, x =u$}$
\begin{align}\displaystyle
I_u&=\int_2^{4} \frac{1}{u^2} \, du\\
&=-\left[\frac{1}{u}\right]^{4}_2 \\
%&=\frac{1}{u} \right|_2-\frac{1}{u} \right|^{4}\\
\end{align}
$\textsf{back substitute $u=\ln \, x $}$
\begin{align}\displaystyle
&I_{3a}=\frac{1}{\ln \, 2 }
-\frac{1}{2\ln \, 2 }
\end{align}
$\textit{think this ok, wasn't sure on simplifying}$