How to Integrate (x^2 + 2x + 1)sqrt(4x^2 + 8x + 5)?

In summary, the formula for integration with square root is: ∫√f(x)dx = 2/3f(x)√f(x) + C, where C is the constant of integration. To solve an integral with a square root in the numerator, you can use the substitution method by letting u = √f(x). Integration by parts can also be used, but it may not always be the most efficient method. When integrating a square root in the denominator, the trigonometric substitution method can be used. It is possible to have a negative value under the square root when integrating, in which case the solution will involve imaginary numbers and the use of appropriate techniques, such as substitution, is necessary.
  • #1
annie122
51
0
how do i integrate (x^2 + 2x + 1)sqrt(4x^2 + 8x + 5)??
 
Physics news on Phys.org
  • #2
Re: integration

Yuuki said:
how do i integrate (x^2 + 2x + 1)sqrt(4x^2 + 8x + 5)??

Hello.

It is possible, that there is an easier way of solving the integral. But it could also be determined:

[tex]\displaystyle \int \ (x^2+2x+1) \sqrt{4x^2+8x+5}[/tex]

[tex]\displaystyle \int \ (x+1)(x+1) \sqrt{4(x+1)^2+1}[/tex]

[tex]u=x+1[/tex]

[tex]v'=(x+1) \sqrt{4(x+1)^2+1}[/tex][tex]\displaystyle \ (uv)'=u'v+uv'[/tex]

[tex]\displaystyle \int \ (uv)'= \int \ u'v+ \int \ uv'[/tex]

Therefore:

[tex]\displaystyle \int \ uv' = uv- \int \ u'v[/tex]

Try to follow.

Regards.
 
  • #3
thanks, i can solve it now :)
 
  • #4
Re: integration

mente oscura said:
Hello.

It is possible, that there is an easier way of solving the integral. But it could also be determined:

[tex]\displaystyle \int \ (x^2+2x+1) \sqrt{4x^2+8x+5}[/tex]

[tex]\displaystyle \int \ (x+1)(x+1) \sqrt{4(x+1)^2+1}[/tex]

You have [tex]\displaystyle \begin{align*} \int{ \left( x + 1 \right) ^2 \sqrt{ 4 \left( x + 1 \right) ^2 + 1 } \, dx } \end{align*}[/tex], I would lean towards doing a substitution here...

[tex]\displaystyle \begin{align*} x + 1 = \frac{1}{2}\tan{\left( \theta \right) } \implies dx = \frac{1}{2} \sec^2{ \left( \theta \right) } \, d\theta \end{align*}[/tex] and the integral becomes

[tex]\displaystyle \begin{align*} \int{ \left( x + 1 \right) ^2 \sqrt{4 \left( x + 1 \right) ^2 + 1 } \, dx} &= \int{ \left[ \frac{1}{2}\tan{ \left( \theta \right) } \right] ^2 \sqrt{ 4 \left[ \frac{1}{2} \tan{ \left( \theta \right) } \right] ^2 + 1 } \, \frac{1}{2} \sec^2{ \left( \theta \right) } \, d\theta } \\ &= \frac{1}{2} \int{ \frac{1}{4}\tan^2{ \left( \theta \right) } \sec^2{ \left( \theta \right) } \, \sqrt{ \tan^2{ \left( \theta \right) } + 1 } \, d\theta } \\ &= \frac{1}{8} \int{ \tan^2{\left( \theta \right) } \sec^2{ \left( \theta \right) } \sec{\left( \theta \right) } \,d\theta } \\ &= \frac{1}{8} \int{ \left[ \sec^2{\left( \theta \right) } - 1 \right] \sec^3{ \left( \theta \right) } \,d\theta } \\ &= \frac{1}{8} \int{ \sec^5{ \left( \theta \right) } - \sec^3{ \left( \theta \right) } \, d\theta } \\ &= \frac{1}{8}\int{ \frac{1}{\cos^5{ \left( \theta \right) } } - \frac{1}{\cos^3{ \left( \theta \right) } } \, d\theta } \\ &= \frac{1}{8} \int{ \frac{\cos{ \left( \theta \right) } }{\cos^6{ \left( \theta \right) } } - \frac{\cos{ \left( \theta \right) } }{\cos^4{ \left( \theta \right) } } \, d\theta } \\ &= \frac{1}{8} \int{ \cos{ \left( \theta \right) } \left\{ \frac{1}{\left[ 1 - \sin^2{ \left( \theta \right) } \right] ^3 } - \frac{ 1}{\left[ 1 - \sin^2{ \left( \theta \right) } \right] ^2 } \right\} \, d\theta } \end{align*}[/tex]

Now let [tex]\displaystyle \begin{align*} u = \sin{ \left( \theta \right) } \implies du = \cos{ \left( \theta \right) } \, d\theta \end{align*}[/tex] and the integral becomes

[tex]\displaystyle \begin{align*} \frac{1}{8} \int{ \cos{ \left( \theta \right) } \left\{ \frac{1}{\left[ 1 - \sin^2{ \left( \theta \right) } \right] ^3} - \frac{1}{ \left[ 1 - \sin^2{ \left( \theta \right) } \right] ^2 } \right\} \,d\theta } &= \frac{1}{8} \int{ \frac{1}{ \left( 1 - u^2 \right) ^3 } - \frac{1}{ \left( 1 - u^2 \right) ^2 } \, du } \\ &= \frac{1}{8} \int{ \frac{1}{ \left( 1 - u \right) ^3 \left( 1 + u \right) ^3 } - \frac{1}{ \left( 1 - u \right) ^2 \left( 1 + u \right) ^2 } \, du } \end{align*}[/tex]

Which can be solved using partial fractions.Hmmm, that was a little too messy for my taste. Maybe a different original substitution would have been easier. Try [tex]\displaystyle \begin{align*} x + 1 = \frac{1}{2}\sinh{ (t) } \implies dx = \frac{1}{2}\cosh{(t)}\,dt \end{align*}[/tex] and the integral becomes

[tex]\displaystyle \begin{align*} \int{ \left( x + 1 \right) ^2 \, \sqrt{4 \left( x + 1 \right) ^2 + 1 } \, dx } &= \int{ \left[ \frac{1}{2} \sinh{(t)} \right] ^2 \sqrt{ 4 \left[ \frac{1}{2}\sinh{(t)} \right] ^2 + 1 } \, \frac{1}{2}\cosh{(t)}\,dt } \\ &= \frac{1}{8} \int{ \sinh^2{(t)}\cosh{(t)} \, \sqrt{ \sinh^2{(t)} + 1 } \, dt } \\ &= \frac{1}{8} \int{ \sinh^2{(t)}\cosh^2{(t)} \, dt } \\ &= \frac{1}{8} \int{ \left[ \frac{1}{2} \sinh{(2t)} \right] ^2 \, dt } \\ &= \frac{1}{32} \int{ \sinh^2{(2t)} \, dt } \\ &= \frac{1}{32} \int{ \frac{1}{2} \left[ \cosh{(4t)} - 1 \right] \, dt } \\ &= \frac{1}{64} \int{ \cosh{(4t)} - 1 \, dt } \\ &= \frac{1}{64} \left[ \frac{1}{4}\sinh{(4t)} - t \right] + C \\ &= \frac{1}{256}\sinh{(4t)} - \frac{1}{64}t + C \\ &= \frac{1}{128}\sinh{(2t)}\cosh{(2t)} - \frac{1}{64}t + C \\ &= \frac{1}{64}\sinh{(t)}\cosh{(t)} \left[ 2 \sinh^2{(t)} + 1 \right] - \frac{1}{64}t + C \\ &= \frac{1}{64} \sinh{(t)} \left[ 2 \sinh^2{(t)} + 1 \right] \, \sqrt{ \sinh^2{(t)} + 1 } - \frac{1}{64}t + C \\ &= \frac{1}{32} \left( x + 1 \right) \left\{ 2 \left[ 2 \left( x + 1 \right) \right] ^2 + 1 \right\} \, \sqrt{ \left[ 2 \left( x + 1 \right) \right] ^2 + 1 } - \frac{1}{64}\,\textrm{arsinh}\, { \left[ 2 \left( x + 1 \right) \right] } + C \\ &= \frac{1}{32} \left( x + 1 \right) \left[ 8 \left( x + 1 \right) ^2 + 1 \right] \, \sqrt{ 4 \left( x + 1 \right) ^2 + 1 } - \frac{1}{64} \, \textrm{ arsinh } \, { \left[ 2 \left( x + 1 \right) \right] } + C \end{align*}[/tex]

PHEW!
 
  • #5
Hello, Yuuki!

[tex]\int (x^2 + 2x + 1)\sqrt{4x^2 + 8x + 5}\,dx[/tex]
Under the radical, we have:
. . [tex]4(x^2+2x+1) + 1 \:=\:4(x+1)^2+1[/tex]

The integral becomes: .[tex]\int (x+1)^2\sqrt{4(x+1)^2+1}\,dx[/tex]

Let [tex]u \,=\,x+1\quad\Rightarrow\quad dx \,=\,du[/tex]

Then we have: .[tex]\int u^2\sqrt{4u^2+1}\,du[/tex]

Let [tex]u \,=\,\tfrac{1}{2}\tan\theta \quad \Rightarrow\quad du \,=\,\tfrac{1}{2}\sec^2\!\theta\,d\theta[/tex]

And we have: .[tex]\int\left(\tfrac{1}{2}\tan\theta\right)^2\left( \sec\theta\right)\left( \tfrac{1}{2}\sec^2\!\theta\,d\theta\right)[/tex]

. . [tex]=\;\tfrac{1}{8}\int\sec^3\!\theta\tan^2\!\theta\,d\theta \;=\;\tfrac{1}{8}\int\sec^3\!\theta(\sec^2\!\theta -1)\,d\theta [/tex]

. . [tex]=\;\tfrac{1}{8}\int(\sec^5\!\theta - \sec^3\!\theta)\,d\theta[/tex]Apply the reduction formula:
. . [tex]\int \sec^n\!x\,dx \;=\;\frac{1}{2}\left[\sec^{n-2}\!x\tan x + \int\sec^{n-2}\!x\,dx\right][/tex]

and remember to back-substitute.
 

FAQ: How to Integrate (x^2 + 2x + 1)sqrt(4x^2 + 8x + 5)?

What is the formula for integration with square root?

The formula for integration with square root is: ∫√f(x)dx = 2/3f(x)√f(x) + C, where C is the constant of integration.

How do you solve an integral with a square root in the numerator?

To solve an integral with a square root in the numerator, you can use the substitution method. Let u = √f(x), then du = f'(x)/2√f(x)dx. This will allow you to rewrite the integral in terms of u, making it solvable.

Can you use integration by parts to solve an integral with a square root?

Yes, integration by parts can be used to solve an integral with a square root. However, it may not always be the most efficient method. It is recommended to try other techniques, such as substitution, first.

How do you handle a square root in the denominator when integrating?

To handle a square root in the denominator when integrating, you can use the trigonometric substitution method. Let x = a sinθ and use trigonometric identities to rewrite the integral in terms of θ. After solving the integral, don't forget to substitute back for x.

Is it possible to have a negative value under the square root when integrating?

Yes, it is possible to have a negative value under the square root when integrating. In this case, the integral will involve imaginary numbers and the solution will be in terms of complex numbers. It is important to be aware of this possibility and use appropriate techniques, such as substitution, to solve the integral.

Similar threads

Replies
6
Views
708
Replies
6
Views
1K
Replies
10
Views
1K
Replies
9
Views
1K
Replies
8
Views
1K
Replies
3
Views
1K
Replies
3
Views
4K
Replies
3
Views
2K
Back
Top