MHB How to Make $y(x^3e^{xy}-y) \, dx+x(xy+x^3e^{xy}) \, dy=0$ Exact?

danny12345
Messages
22
Reaction score
0
$y(x^3e^{xy}-y) \, dx+x(xy+x^3e^{xy}) \, dy=0$
change it into exact differential and help me in solving it
 
Physics news on Phys.org
I've improved your typesetting by including dollar signs, as well as introducing a right parenthesis that seemed implied.

So, we need to convert this into an exact equation. I would recommend multiplying by something of the form $x^n y^m$, and see if you can figure out the $n$ and $m$ that make it exact.
 
There is the following linear Volterra equation of the second kind $$ y(x)+\int_{0}^{x} K(x-s) y(s)\,{\rm d}s = 1 $$ with kernel $$ K(x-s) = 1 - 4 \sum_{n=1}^{\infty} \dfrac{1}{\lambda_n^2} e^{-\beta \lambda_n^2 (x-s)} $$ where $y(0)=1$, $\beta>0$ and $\lambda_n$ is the $n$-th positive root of the equation $J_0(x)=0$ (here $n$ is a natural number that numbers these positive roots in the order of increasing their values), $J_0(x)$ is the Bessel function of the first kind of zero order. I...
Are there any good visualization tutorials, written or video, that show graphically how separation of variables works? I particularly have the time-independent Schrodinger Equation in mind. There are hundreds of demonstrations out there which essentially distill to copies of one another. However I am trying to visualize in my mind how this process looks graphically - for example plotting t on one axis and x on the other for f(x,t). I have seen other good visual representations of...
Back
Top