- #1
MathematicalPhysicist
Gold Member
- 4,699
- 373
Assume I have the next function f(x)=x^3-c-bx-ax^2 and I am asked to find the coefficients a,b,c which minimizes the norm of f under L_2[-1,1].
All I need to do here is equate [tex]f=\sum_k <f,\phi_k>\phi_k[/tex] where the phis are orthonormal functions, in this case simply 1,x,x^2,x^3, I am not sure this correct cause I found the next coefficients:
<f,1>=sqrt(-2a-2c/3)
<f,x>=sqrt(2/5-2/3 b)
<f,x^2>=sqrt(-2a/3-2c/5)
<f,x^3>=sqrt(2/7-2b/5)
But when equation I find two different solutions to b, so I suspect this is the wrong to solve this problem, any hints as to how to minimize this functional.
All I need to do here is equate [tex]f=\sum_k <f,\phi_k>\phi_k[/tex] where the phis are orthonormal functions, in this case simply 1,x,x^2,x^3, I am not sure this correct cause I found the next coefficients:
<f,1>=sqrt(-2a-2c/3)
<f,x>=sqrt(2/5-2/3 b)
<f,x^2>=sqrt(-2a/3-2c/5)
<f,x^3>=sqrt(2/7-2b/5)
But when equation I find two different solutions to b, so I suspect this is the wrong to solve this problem, any hints as to how to minimize this functional.