- #1
zenterix
- 702
- 84
- Homework Statement
- Consider the circuit below which is an RLC circuit with the circuit elements in parallel.
- Relevant Equations
- I would like to find the amplitude of the current ##I##.
If we apply KVL to the three separate loops involving the AC voltage we obtain expressions for ##I_R, I_L##, and ##I_C##.
$$-V(t)+I_R(t)R=0$$
$$\implies I_R(t)=\frac{V_0}{R}\sin{(\omega t)}$$
$$-V(t)=-L\dot{I}_L(t)$$
$$\implies I_L(t)=\frac{V_0}{\omega L}\sin{(\omega t-\pi/2)}$$
$$-V(t)+\frac{q(t)}{C}=0$$
$$\implies I_C(t)=V_0C\omega\sin{(\omega t+\pi/2)}$$
By KCL we have
$$I=I_R+I_L+I_C=\frac{V_0}{R}\sin{(\omega t)}+\frac{V_0}{\omega L}\sin{(\omega t-\pi/2)}+V_0\omega C\sin{(\omega t+\pi/2)}$$
How do we find the amplitude of ##I##?
In the notes I am following, they use phasor diagrams. I would like to know how to obtain the amplitude using analytical methods.