- #1
KFC
- 488
- 4
Suppose a proudct is form by a Fock state [tex]|n\rangle[/tex] and any other state [tex]|x\rangle[/tex], i.e.
[tex]|\phi\rangle = |n\rangle|x\rangle[/tex]
If an operator defined as
[tex]
A = \left(
\begin{matrix}
\alpha\hat{a}\hat{a}^\dagger & \beta\hat{a}^\dagger\hat{a} \\
\gamma\hat{a}^\dagger\hat{a} & \kappa\hat{a}\hat{a}^\dagger
\end{matrix}
\right)
[/tex]
where [tex]\hat{a}[/tex] and [tex]\hat{a}^\dagger[/tex] is creation and annilation operator will only opeate on Fock state. So how A operate on [tex]|n\rangle|x\rangle[/tex]?
[tex]|\phi\rangle = |n\rangle|x\rangle[/tex]
If an operator defined as
[tex]
A = \left(
\begin{matrix}
\alpha\hat{a}\hat{a}^\dagger & \beta\hat{a}^\dagger\hat{a} \\
\gamma\hat{a}^\dagger\hat{a} & \kappa\hat{a}\hat{a}^\dagger
\end{matrix}
\right)
[/tex]
where [tex]\hat{a}[/tex] and [tex]\hat{a}^\dagger[/tex] is creation and annilation operator will only opeate on Fock state. So how A operate on [tex]|n\rangle|x\rangle[/tex]?
Last edited: