- #1
utkarshakash
Gold Member
- 854
- 13
Homework Statement
If a,b,c are the positive real numbers, prove that [itex]a^2(1+b^2)+b^2(1+c^2)+c^2(1+a^2) \geq 6abc[/itex]
Homework Equations
The Attempt at a Solution
With a little simplification L.H.S = [itex](a^2+b^2+c^2)+(a^2b^2+b^2c^2+c^2a^2)[/itex]
Using A.M>=G.M
[itex]\dfrac{a^2+b^2+c^2}{3} \geq (a^2b^2c^2)^{\frac{1}{3}} \\
a^2+b^2+c^2 \geq 3a^{2/3}b^{2/3}c^{2/3} \\
[/itex]
Also
[itex] \dfrac{a^2b^2+b^2c^2+c^2a^2}{3} \geq (a^2b^2.b^2c^2.c^2a^2)^{1/3} \\
a^2b^2+b^2c^2+c^2a^2 \geq 3a^{4/3}b^{4/3}c^{4/3}
[/itex]
Adding the two inequalities
[itex]
(a^2+b^2+c^2)+(a^2b^2+b^2c^2+c^2a^2) \geq 3[a^{2/3}b^{2/3}c^{2/3}+a^{4/3}b^{4/3}c^{4/3}]
[/itex]
Now how do I simplify next?