- #1
Spider
- 1
- 0
Please guide me how to prove the last equation by induction.
Regards!
Conversely, any representation of the form (Zeckendorf's Theorem)
$$n=F_{k_{1}}+F_{k_{2}}+...+F_{k_{r}}, \quad k_{1}\gg k_{2}\gg ... \gg k_{r} \gg 0.$$
Implies that
$$ F_{k_{1}} \leq n < F_{k_{1}+1}, $$
because the largest possible value of $F_{k_{2}}+...+F_{k_{r}},$ when $k\gg k_{2}\gg...\gg k_{r}\gg0\:$is
$$F_{k-2}+F_{k-4}+...+F_{k\,mod\,2+2}=F_{k-1}-1, \quad \quad if\: k\geq2.$$
This last equation is to prove by induction on $k;$ the left-hand side is zero when $k$ is $2$ or $3$. Therefore $k_{1}$ is the greedily chosen value described earlier, and the representation must be unique.
Regards!
Conversely, any representation of the form (Zeckendorf's Theorem)
$$n=F_{k_{1}}+F_{k_{2}}+...+F_{k_{r}}, \quad k_{1}\gg k_{2}\gg ... \gg k_{r} \gg 0.$$
Implies that
$$ F_{k_{1}} \leq n < F_{k_{1}+1}, $$
because the largest possible value of $F_{k_{2}}+...+F_{k_{r}},$ when $k\gg k_{2}\gg...\gg k_{r}\gg0\:$is
$$F_{k-2}+F_{k-4}+...+F_{k\,mod\,2+2}=F_{k-1}-1, \quad \quad if\: k\geq2.$$
This last equation is to prove by induction on $k;$ the left-hand side is zero when $k$ is $2$ or $3$. Therefore $k_{1}$ is the greedily chosen value described earlier, and the representation must be unique.