- #1
Reid
- 36
- 0
Homework Statement
Given an interval I. The function f goes from I to the real line. Define f as f(x)=x^2 if x rational or 0 if x is irrational. show that f i differentiablle at x=0 and find its derivative at this point, i.e. x=0.
Homework Equations
I have a given lead on this. That |f(x)/x|<|x|. But I'm not sure how this should help me. I have started with the definition and I have tried to determine a certain epsilon for which this is true. But I don't know how.
The Attempt at a Solution
I have shown that the function is continuous at this point and therefore know that the derivative might exist. But when it comes to the actual differentiability I have that (according to the definition),
given a positive epsilon there exists a delta. For x satisfying the inequality
0<|x-c|<delta, the inequality |(f(x)-f(c))/(x-c)-L|<epsilon holds. L then is called f's derivative in the point c.
I'm not sure if this counts as an attempt. But this problem is really bugging me.
Hopes for an answer!