- #1
GreenBeret
- 5
- 0
In the metric space [tex](\mathbb R, d)[/tex]
1) [tex]d(x,y) = |{tan}^{ - 1}(x) - {tan}^{ - 1}(y)|[/tex] ,where x,y are real numbers .
2) [tex]d(x,y) = |{tan}^{ - 1}(x) - {tan}^{ - 1}(y)|[/tex], where x,y are real numbers .
Show that [tex](\mathbb R, d)[/tex] w.r.t (1) and (2) are incomplete metric space . Also, what is the completion space of both w.r.t. (1) and (2).
I appreciate any help.
1) [tex]d(x,y) = |{tan}^{ - 1}(x) - {tan}^{ - 1}(y)|[/tex] ,where x,y are real numbers .
2) [tex]d(x,y) = |{tan}^{ - 1}(x) - {tan}^{ - 1}(y)|[/tex], where x,y are real numbers .
Show that [tex](\mathbb R, d)[/tex] w.r.t (1) and (2) are incomplete metric space . Also, what is the completion space of both w.r.t. (1) and (2).
I appreciate any help.