- #1
mnb96
- 715
- 5
Hello,
two distances [itex]d_1[/itex] and [itex]d_2[/itex] are said to be equivalent if for any two pairs (a,b) and (c,d)
[tex]d_1(a,b)=d_1(c,d) \Leftrightarrow d_2(a,b)=d_2(c,d)[/tex]
How can I (dis)prove that:
[tex]d_1(a,b)<d_1(c,d) \Rightarrow d_2(a,b)<d_2(c,d)[/tex]
two distances [itex]d_1[/itex] and [itex]d_2[/itex] are said to be equivalent if for any two pairs (a,b) and (c,d)
[tex]d_1(a,b)=d_1(c,d) \Leftrightarrow d_2(a,b)=d_2(c,d)[/tex]
How can I (dis)prove that:
[tex]d_1(a,b)<d_1(c,d) \Rightarrow d_2(a,b)<d_2(c,d)[/tex]