- #1
Alexandre
- 29
- 0
How can show that momentum is the gradient of the action for the free particle? I tried it like this for one dimensional case:
[tex] s=\int Ldt [/tex]
[tex] ds=Ldt [/tex]
[tex] ds=\frac{mv^2}{2}dt\:[/tex]
Velocity is constant right? So I should be able to to this:
[tex] \frac{ds}{dx}=\frac{mv^2}{2}\frac{dt}{dx} [/tex]
I'm not sure about the following step where I use: [tex] \frac{dt}{dx}=\frac{1}{v} [/tex] is this correct?
[tex] \frac{ds}{dx}=\frac{mv^2}{2}\frac{1}{v} [/tex]
And finally I get:
[tex] \frac{ds}{dx}=\frac{mv}{2} [/tex]
It differs from momentum by the factor of 1/2, where did I make the mistake?
[tex] s=\int Ldt [/tex]
[tex] ds=Ldt [/tex]
[tex] ds=\frac{mv^2}{2}dt\:[/tex]
Velocity is constant right? So I should be able to to this:
[tex] \frac{ds}{dx}=\frac{mv^2}{2}\frac{dt}{dx} [/tex]
I'm not sure about the following step where I use: [tex] \frac{dt}{dx}=\frac{1}{v} [/tex] is this correct?
[tex] \frac{ds}{dx}=\frac{mv^2}{2}\frac{1}{v} [/tex]
And finally I get:
[tex] \frac{ds}{dx}=\frac{mv}{2} [/tex]
It differs from momentum by the factor of 1/2, where did I make the mistake?
Last edited: