- #1
courtrigrad
- 1,236
- 2
Prove that [tex] 1^{3} + 2^{3} + 3^{3} + ... + n^{3} = (1 + 2 + 3 + ... + n)^{2} [/tex]. So for [tex] n =1 [/tex] [tex] 1^{3} = 1^{2} [/tex]. For [tex] n = k [/tex], [tex] 1^{3} + 2^{3} + 3^{3} + ...+ k^{3} = (1+2+3+...+ k )^{2} [/tex]. For [tex] n = k+1 [/tex],[tex] 1^{3} + 2^{3} + 3^{3} +...+ k^{3} + (k+1)^{3} = (1+2+3+..+ (k+1))^{2} [/tex]. So do I then do this:
[tex] 1^{3} + 2^{3} + 3^{3} + ... + k^{3} + (k+1)^{3} = (1+2+3+...+ k)^{2} + (k+1)^{3} [/tex] to show that it is equal to [tex] n = k+1 [/tex]?
Thanks
[tex] 1^{3} + 2^{3} + 3^{3} + ... + k^{3} + (k+1)^{3} = (1+2+3+...+ k)^{2} + (k+1)^{3} [/tex] to show that it is equal to [tex] n = k+1 [/tex]?
Thanks
Last edited: