- #1
Tony1
- 17
- 0
How to show that,
$$8\pi\int_{0}^{\pi/2}\cos^2x\cdot{\ln^2(\tan^2 x)\over [\pi^2+\ln^2(\tan^2 x)]^2}\mathrm dx=\ln 2-{1\over 4}\zeta(2)$$
$$8\pi\int_{0}^{\pi/2}\cos^2x\cdot{\ln^2(\tan^2 x)\over [\pi^2+\ln^2(\tan^2 x)]^2}\mathrm dx=\ln 2-{1\over 4}\zeta(2)$$