- #1
jillna
- 2
- 0
Posted: Tue, 20 Jul 2010 14:49:50 Post subject: find a function from the limit
Suppose:
[late]\lim_{x \rightarrow \infty} \frac{log f_1(x)}{ log x } = c_1[/late]
and
[late]\lim_{x \rightarrow \infty} \frac{log f_2(x)}{ log x } = c_2[/late]
if [late]c_2>c_1[/late] then
[late]\lim_{x \rightarrow \infty} \frac{ log f_1(x) + f_2(x) ] }{ log x } = c_2 [/late]
can anyone tell me how to prove this rigorously?
tks
Suppose:
[late]\lim_{x \rightarrow \infty} \frac{log f_1(x)}{ log x } = c_1[/late]
and
[late]\lim_{x \rightarrow \infty} \frac{log f_2(x)}{ log x } = c_2[/late]
if [late]c_2>c_1[/late] then
[late]\lim_{x \rightarrow \infty} \frac{ log f_1(x) + f_2(x) ] }{ log x } = c_2 [/late]
can anyone tell me how to prove this rigorously?
tks
Last edited: