- #1
Dustinsfl
- 2,281
- 5
Show $\sum\limits_{n=1}^{\infty}\frac{1}{n^2} = \frac{\pi^2}{6}$ using the series for $(\pi\cot\pi z)'$ at $z = 0$
I know from class that $\sin\pi z = \pi z\prod\limits_{n\in\mathbb{Z} -\{0\}}\left[\left(1-\frac{z}{n}\right)e^{z/n}\right]$
So do I need to use that to rewrite cot as cosine over that product?
I know from class that $\sin\pi z = \pi z\prod\limits_{n\in\mathbb{Z} -\{0\}}\left[\left(1-\frac{z}{n}\right)e^{z/n}\right]$
So do I need to use that to rewrite cot as cosine over that product?