- #1
klim
- 8
- 0
Hallo, can someone help me to proof this inequality:
\(\displaystyle (\lambda-(m+1)) \cdot \frac{m!}{\lambda^{m+1}} \cdot \sum_{j=0}^m \frac{\lambda^j}{j!} (m+1-j) \leq \frac{\lambda}{\lambda-m} \)
with condition \(\displaystyle m+1 < \lambda \).
\(\displaystyle \lambda\) is real und \(\displaystyle m\) is integer.
\(\displaystyle (\lambda-(m+1)) \cdot \frac{m!}{\lambda^{m+1}} \cdot \sum_{j=0}^m \frac{\lambda^j}{j!} (m+1-j) \leq \frac{\lambda}{\lambda-m} \)
with condition \(\displaystyle m+1 < \lambda \).
\(\displaystyle \lambda\) is real und \(\displaystyle m\) is integer.