- #1
Usagi
- 45
- 0
The context of the following identity is in the Classical Normal Linear Regression Model, ie, $\boldsymbol{y} = \boldsymbol{X}\boldsymbol{\beta}+ \boldsymbol{u}$ where $\boldsymbol{u}$ is a $n \times 1$ matrix and $u_i \sim iid.N(0, \sigma^2)$ for $i = 1, 2, \cdots, n$
Show that $(\boldsymbol{y}-\boldsymbol{X}\boldsymbol{\beta})'(\boldsymbol{y}-\boldsymbol{X}\boldsymbol{\beta}) = (\boldsymbol{y}-\boldsymbol{X}\boldsymbol{b})'(\boldsymbol{y}-\boldsymbol{X}\boldsymbol{b})+(\boldsymbol{\beta}-\boldsymbol{b})'\boldsymbol{X}'\boldsymbol{X}(\boldsymbol{\beta}-\boldsymbol{b}) \ \cdots (1)$
where:
$\boldsymbol{y}$ is a $n \times 1$ matrix
$\boldsymbol{X}$ is a $n \times k$ matrix
$\boldsymbol{\beta}$ is a $k \times 1$ matrix
$\boldsymbol{b}$ is a $k \times 1$ matrix
$rank(\boldsymbol{X}) = k$
$\boldsymbol{b} = (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{y}$ ----------
**Question:** How do I algebraically manipulate the LHS of $(1)$ to become the RHS?
Show that $(\boldsymbol{y}-\boldsymbol{X}\boldsymbol{\beta})'(\boldsymbol{y}-\boldsymbol{X}\boldsymbol{\beta}) = (\boldsymbol{y}-\boldsymbol{X}\boldsymbol{b})'(\boldsymbol{y}-\boldsymbol{X}\boldsymbol{b})+(\boldsymbol{\beta}-\boldsymbol{b})'\boldsymbol{X}'\boldsymbol{X}(\boldsymbol{\beta}-\boldsymbol{b}) \ \cdots (1)$
where:
$\boldsymbol{y}$ is a $n \times 1$ matrix
$\boldsymbol{X}$ is a $n \times k$ matrix
$\boldsymbol{\beta}$ is a $k \times 1$ matrix
$\boldsymbol{b}$ is a $k \times 1$ matrix
$rank(\boldsymbol{X}) = k$
$\boldsymbol{b} = (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{y}$ ----------
**Question:** How do I algebraically manipulate the LHS of $(1)$ to become the RHS?