- #1
Math100
- 802
- 222
- Homework Statement
- Prove that ## \sum_{\substack{prime p\leq x \\ p\equiv 3\pmod {10}}}\frac{1}{p}=\frac{1}{4}\log\log {x}+A+O(\frac{1}{\log {x}}) ##, for some constant ## A ##.
- Relevant Equations
- Suppose ## gcd(h, k)=1 ## for ## k>0 ##. Then, there exists a constant ## A ## such that for all ## x\geq 2 ##:
## \sum_{\substack{prime p\leq x \\ p\equiv h\pmod {k}}}\frac{1}{p}=\frac{1}{\varphi(k)}\log\log {x}+A+O(\frac{1}{\log {x}}) ##.
Abel's summation formula:
If ## A(x)=\int_{y}^{x}a(t)dt ##, then ## \int_{y}^{x}a(t)f(t)dt=A(x)f(x)-A(y)f(y)-\int_{y}^{x}A(t)f'(t)dt ##.
Before I apply/use the Abel's summation formula, how should I find ## f(x) ##?