- #1
Euge
Gold Member
MHB
POTW Director
- 2,073
- 243
Here is this week's POTW:
-----
Consider a strictly increasing sequence of natural numbers $(n_k)_{k = 1}^\infty$, and suppose $X$ is the subset of $[0,2\pi]$ consisting of all $x$ such that the sequence $(\sin(n_k x))_{k = 1}^\infty$ is convergent. Prove $X$ has Lebesgue measure zero.-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
-----
Consider a strictly increasing sequence of natural numbers $(n_k)_{k = 1}^\infty$, and suppose $X$ is the subset of $[0,2\pi]$ consisting of all $x$ such that the sequence $(\sin(n_k x))_{k = 1}^\infty$ is convergent. Prove $X$ has Lebesgue measure zero.-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!