- #1
Bruno Tolentino
- 97
- 0
Someone can explain me how to get the general solution for this system of ODE of second order with constant coeficients:[tex]
\begin{bmatrix}
a_{11} & a_{12}\\
a_{21} & a_{22}\\
\end{bmatrix}
\begin{bmatrix}
\frac{d^2x}{dt^2}\\
\frac{d^2y}{dt^2}\\
\end{bmatrix}
+
\begin{bmatrix}
b_{11} & b_{12}\\
b_{21} & b_{22}\\
\end{bmatrix}
\begin{bmatrix}
\frac{dx}{dt}\\
\frac{dy}{dt}\\
\end{bmatrix}
+
\begin{bmatrix}
c_{11} & c_{12}\\
c_{21} & c_{22}\\
\end{bmatrix}
\begin{bmatrix}
x\\
y\\
\end{bmatrix}
=
\begin{bmatrix}
0\\
0\\
\end{bmatrix}
[/tex]
OBS: source of the doubt: https://es.wikipedia.org/wiki/Movimiento_armónico_complejo
\begin{bmatrix}
a_{11} & a_{12}\\
a_{21} & a_{22}\\
\end{bmatrix}
\begin{bmatrix}
\frac{d^2x}{dt^2}\\
\frac{d^2y}{dt^2}\\
\end{bmatrix}
+
\begin{bmatrix}
b_{11} & b_{12}\\
b_{21} & b_{22}\\
\end{bmatrix}
\begin{bmatrix}
\frac{dx}{dt}\\
\frac{dy}{dt}\\
\end{bmatrix}
+
\begin{bmatrix}
c_{11} & c_{12}\\
c_{21} & c_{22}\\
\end{bmatrix}
\begin{bmatrix}
x\\
y\\
\end{bmatrix}
=
\begin{bmatrix}
0\\
0\\
\end{bmatrix}
[/tex]
OBS: source of the doubt: https://es.wikipedia.org/wiki/Movimiento_armónico_complejo