B How to relate relativistic kinetic energy and momentum

greg_rack
Gold Member
Messages
361
Reaction score
79
Hi guys,

a special relativity problem requested to choose the right graph representing relativistic momentum ##p## as a function of rel. kinetic energy ##K##, from these four:
IMG_C89C1901D709-1.jpeg
At first, I tried writing ##p## as a function of ##K##, in order to then analyze the function's graph and see if it matches one of the four above, being ##p=\gamma mv## and ##K=mc^2(\gamma - 1)##, but I couldn't rearrange those two in such a way.
By deduction, I believe the graph should be C or D, since momentum would reasonably tend to infinity in a non-linear way(A) due to the presence of factor ##\gamma##, nor as indicated by B...
 
Last edited:
Physics news on Phys.org
You have an equation for ##p(\gamma, v)## and an equation for ##K(\gamma)##, so of course, you cannot use them to find an equation ##p(K)##, you need an extra equation, do you know of any equation that relates ##\gamma## and ##v##?
 
Gaussian97 said:
You have an equation for ##p(\gamma, v)## and an equation for ##K(\gamma)##, so of course, you cannot use them to find an equation ##p(K)##, you need an extra equation, do you know of any equation that relates ##\gamma## and ##v##?
Aren't ##\gamma## and ##v## simply related by ##\gamma##'s definition ##\gamma=\frac{1}{\sqrt{1-\beta ^2}}##, being ##\beta## the velocity in terms of ##c##?
 
greg_rack said:
Aren't ##\gamma## and ##v## simply related by ##\gamma##'s definition ##\gamma=\frac{1}{\sqrt{1-\beta ^2}}##, being ##\beta## the velocity in terms of ##c##?
Yes. So you should be able to write ##p(v)## and ##K(v)## and hence ##K(p)##.

Alternatively, do you know anything about ##E^2## and ##p^2c^2##?
 
  • Like
Likes greg_rack
Ibix said:
Alternatively, do you know anything about ##E^2## and ##p^2c^2##?
Yes, ##E^2=p^2c^2+m^2c^{4}##.
Rearranging, it indeed gets ##p(E)=\frac{1}{c}\sqrt{E^2-E_0^2}##, hence:
$$p(K)=\frac{1}{c}\sqrt{K(K+2E_0)}$$
which corresponds to graph C :)
 
  • Like
Likes Ibix and PeroK
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
Back
Top