How to shift the function xe^x mathematically by one unit on the x axis?

AI Thread Summary
To shift the function xe^(-x) one unit to the right on the x-axis, the transformation involves replacing x with (x-1), resulting in the new function (x-1)e^(-(x-1)). This method applies universally, as demonstrated with the simpler case of x^2, which becomes (x-1)^2 when shifted. Mathematically, if a function f(x) has a root at x=a, then the shifted function f(x-h) will have a root at x=a+h, confirming the shift. This illustrates the general principle of horizontal shifts in functions. Understanding this transformation is essential for manipulating functions in calculus and algebra.
bugatti79
Messages
786
Reaction score
4
Hi Folks,

I have a function x {e^{-x}} and if i shift it one unit to the right on the x-axis we have (x-1) {e^{-(x-1)}}

How do I show this mathematically?

Even consider the simple case of x^2, if we shift by 1 unit to the right it becomes (x-1)^2

What is the method mathematically?

Regards
 
Mathematics news on Phys.org
Suppose $f(x)$ has a root at $x=a$, i.e., $f(a)=0$. Then $f(x-h)$ will have a root at $x-h=a$, or $x=a+h$. Thus, the function $f$ has been shifted $h$ units to the right.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top