- #1
Bill Foster
- 338
- 0
Homework Statement
How do you get from (3.25) to (3.26) in Jackson?
Homework Equations
Equation 3.25:
[tex]
A_l=\left(2l+1\right)\int_0^1P_l\left(x\right)dx
[/tex]
Equation 3.26:
[tex]
A_l=\left(-\frac{1}{2}\right)^{\frac{l-1}{2}}\frac{\left(2l+1\right)\left(l-2\right)!}{2\left(\frac{l+1}{2}\right)!}
[/tex]
Rodriques:
[tex]
P_l\left(x\right)=\frac{1}{2^l l!}\frac{d^l}{dx^l}\left(x^2-1\right)^l
[/tex]
The Attempt at a Solution
Put Rodrigues into (3.25):
[tex]
A_l=\frac{\left(2l+1\right)}{2^l l!}\int_0^1\frac{d^l}{dx^l}\left(x^2-1\right)^ldx
[/tex]
Evaluate:
[tex]
\frac{d^l}{dx^l}\left(x^2-1\right)^l
[/tex]
[tex]
=\frac{d^l}{dx^l}\sum_k{\left(\frac{l!}{k!\left(l-k\right)!}\right)\left(x^2\right)^{l-k}\left(-1\right)^k}
[/tex]
We worked this out in class, and somehow that sum goes away. But I forgot how.
As I work out the derivatives, I end up with:
[tex]
=\sum_k{\left(\frac{l!}{k!\left(l-k\right)!}\right)2\left(l-k\right)\left(2\left(l-k\right)-1\right)\left(2\left(l-k\right)-2\right)\left(2\left(l-k\right)-3\right)...\left(2\left(l-k\right)-\left(l-1\right)\right)x^{l-2k}\left(-1\right)^k
[/tex]
Any value of [tex]k>\frac{l}{2}[/tex] and the expression is zero. So the sum only goes from [tex]k=0[/tex] to [tex]\frac{l-1}{2}[/tex].
How do I get rid of that sum completely?
Last edited: