How to Simplify (3.25) using Rodrigues Formula and Evaluate the Derivative?

  • Thread starter Bill Foster
  • Start date
  • Tags
    Jackson
That only works if k=l. So:A_l=\frac{\left(2l+1\right)}{2^l l!}\sum_{k=\frac{l}{2},\frac{l+1}{2},l}^{l}{\left(\frac{l !}{k!\left(l-k\right)!}\right)2k(2k-1)(2k-2)...(2k-(l-2))\left(-1\right)^{l-k}But A_l should have a 2\left(\frac{l+1}{2}\right)! factor in the denominator, so let's put that back in:A
  • #1
Bill Foster
338
0

Homework Statement



How do you get from (3.25) to (3.26) in Jackson?

Homework Equations



Equation 3.25:

[tex]
A_l=\left(2l+1\right)\int_0^1P_l\left(x\right)dx
[/tex]

Equation 3.26:

[tex]
A_l=\left(-\frac{1}{2}\right)^{\frac{l-1}{2}}\frac{\left(2l+1\right)\left(l-2\right)!}{2\left(\frac{l+1}{2}\right)!}
[/tex]

Rodriques:

[tex]
P_l\left(x\right)=\frac{1}{2^l l!}\frac{d^l}{dx^l}\left(x^2-1\right)^l
[/tex]

The Attempt at a Solution



Put Rodrigues into (3.25):

[tex]
A_l=\frac{\left(2l+1\right)}{2^l l!}\int_0^1\frac{d^l}{dx^l}\left(x^2-1\right)^ldx
[/tex]

Evaluate:

[tex]
\frac{d^l}{dx^l}\left(x^2-1\right)^l
[/tex]

[tex]
=\frac{d^l}{dx^l}\sum_k{\left(\frac{l!}{k!\left(l-k\right)!}\right)\left(x^2\right)^{l-k}\left(-1\right)^k}
[/tex]

We worked this out in class, and somehow that sum goes away. But I forgot how.

As I work out the derivatives, I end up with:

[tex]
=\sum_k{\left(\frac{l!}{k!\left(l-k\right)!}\right)2\left(l-k\right)\left(2\left(l-k\right)-1\right)\left(2\left(l-k\right)-2\right)\left(2\left(l-k\right)-3\right)...\left(2\left(l-k\right)-\left(l-1\right)\right)x^{l-2k}\left(-1\right)^k
[/tex]

Any value of [tex]k>\frac{l}{2}[/tex] and the expression is zero. So the sum only goes from [tex]k=0[/tex] to [tex]\frac{l-1}{2}[/tex].

How do I get rid of that sum completely?
 
Last edited:
Physics news on Phys.org
  • #2
Bill Foster said:
Equation 3.26:

[tex]
A_l=\left(-\frac{1}{2}\right)^{\frac{l-1}{2}}\frac{\left(2l+1\right)\left(l-2\right)!}{2\left(\frac{l+1}{2}\right)!}
[/tex]

Looks like Jackson contains a typo; this should should be:

[tex]
A_l=(-1)^{l-1}\left(\frac{1}{2}\right)^{\frac{l-1}{2}}\frac{\left(2l+1\right)\left(l-2\right)!}{2\left(\frac{l+1}{2}\right)!}
[/tex]
Evaluate:

[tex]
\frac{d^l}{dx^l}\left(x^2-1\right)^l
[/tex]

[tex]
=\frac{d^l}{dx^l}\sum_k{\left(\frac{l!}{k!\left(l-k\right)!}\right)\left(x^2\right)^{l-k}\left(-1\right)^k}
[/tex]

We worked this out in class, and somehow that sum goes away. But I forgot how.

You've messed up the binomial expansion; you should have:

[tex]
=\frac{d^l}{dx^l}\sum_{k=0}^{\infty}{\left(\frac{l!}{k!\left(l-k\right)!}\right)x^{2k}\left(-1\right)^{l-k}}
[/tex]
 
  • #3
That still doesn't get rid of the sum. It only gets rid of the values [tex]k=0[/tex] to [tex]k=\frac{l-1}{2}[/tex].
 
  • #4
Okay, so that leaves you with

[tex]A_l=\frac{2l+1}{2^ll!}\sum_{k=\frac{l-1}{2}}^\infty\frac{l!}{k!(l-k)!}}(-1)^{l-k}\int_0^1\frac{d^l}{dx^l}(x^{2k})dx[/tex]

Now, I think what you want to do is make the substitution [itex]j=k-\frac{l-1}{2}[/itex]...
 
Last edited:
  • #5
[tex]\frac{d^l}{dx^l}\sum_{k=0}^{l}{\left(\frac{l !}{k!\left(l-k\right)!}\right)x^{2k}\left(-1\right)^{l-k}}[/tex]

Differentiate once (1st time):

[tex]\frac{d^{l-1}}{dx^{l-1}}\sum_{k=0}^{l}{\left(\frac{l !}{k!\left(l-k\right)!}\right)2kx^{2k-1}\left(-1\right)^{l-k}}[/tex]

Differentiate again (2nd time):

[tex]\frac{d^{l-2}}{dx^{l-2}}\sum_{k=0}^{l}{\left(\frac{l !}{k!\left(l-k\right)!}\right)2k(2k-1)x^{2k-2}\left(-1\right)^{l-k}}[/tex]

Differentiate again (third time):

[tex]\frac{d^{l-3}}{dx^{l-3}}\sum_{k=0}^{l}{\left(\frac{l !}{k!\left(l-k\right)!}\right)2k(2k-1)(2k-2)x^{2k-3}\left(-1\right)^{l-k}}[/tex]

...
...

Differentiate lth time:

[tex]\frac{d^{l-l}}{dx^{l-l}}\sum_{k=0}^{l}{\left(\frac{l !}{k!\left(l-k\right)!}\right)2k(2k-1)(2k-2)...(2k-(l-1))x^{2k-l}\left(-1\right)^{l-k}}[/tex]

That leaves me with:

[tex]\sum_{k=0}^{l}{\left(\frac{l !}{k!\left(l-k\right)!}\right)2k(2k-1)(2k-2)...(2k-(l-1))x^{2k-l}\left(-1\right)^{l-k}}[/tex]

Now, if [tex]k=0[/tex], the whole expression is zero. So we can rewrite it as:

[tex]\sum_{k=1}^{l}{\left(\frac{l !}{k!\left(l-k\right)!}\right)2k(2k-1)(2k-2)...(2k-(l-1))x^{2k-l}\left(-1\right)^{l-k}}[/tex]

But if [tex]k=\frac{1}{2}[/tex], then the expression is also zero. But k can only be an integer. However, due to the term [tex]2k-2[/tex], if [tex]k=1[/tex] the expression is zero. So rewrite as:

[tex]\sum_{k=2}^{l}{\left(\frac{l !}{k!\left(l-k\right)!}\right)2k(2k-1)(2k-2)...(2k-(l-1))x^{2k-l}\left(-1\right)^{l-k}}[/tex]

Now let's just cut to the chase:

[tex](2k-(l-1)[/tex]

If [tex]k=\frac{l-1}{2}[/tex] or less, the expression is zero.

So rewrite as:

[tex]\sum_{k=\frac{l-1}{2}+1}^{l}{\left(\frac{l !}{k!\left(l-k\right)!}\right)2k(2k-1)(2k-2)...(2k-(l-1))x^{2k-l}\left(-1\right)^{l-k}}[/tex]

Which can be written as:

[tex]\sum_{k=\frac{l+1}{2}}^{l}{\left(\frac{l !}{k!\left(l-k\right)!}\right)2k(2k-1)(2k-2)...(2k-(l-1))x^{2k-l}\left(-1\right)^{l-k}}[/tex]

That only works if l is odd. If l is even, then it would be written as:

[tex]\sum_{k=\frac{l}{2}}^{l}{\left(\frac{l !}{k!\left(l-k\right)!}\right)2k(2k-1)(2k-2)...(2k-(l-1))x^{2k-l}\left(-1\right)^{l-k}}[/tex]

So we have the following:

[tex]A_l=\frac{\left(2l+1\right)}{2^l l!}\int_0^1\frac{d^l}{dx^l}\left(x^2-1\right)^ldx[/tex]
[tex]=\frac{\left(2l+1\right)}{2^l l!}\int_0^1\sum_{k=\frac{l}{2}}^{l}{\left(\frac{l !}{k!\left(l-k\right)!}\right)2k(2k-1)(2k-2)...(2k-(l-1))x^{2k-l}\left(-1\right)^{l-k}}dx[/tex]
[tex]=\frac{\left(2l+1\right)}{2^l l!}\sum_{k=\frac{l}{2}}^{l}{\left(\frac{l !}{k!\left(l-k\right)!}\right)2k(2k-1)(2k-2)...(2k-(l-1))\left(-1\right)^{l-k}\int_0^1x^{2k-l}}dx[/tex] for even l
[tex]=\frac{\left(2l+1\right)}{2^l l!}\sum_{k=\frac{l+1}{2}}^{l}{\left(\frac{l !}{k!\left(l-k\right)!}\right)2k(2k-1)(2k-2)...(2k-(l-1))\left(-1\right)^{l-k}\int_0^1x^{2k-l}}dx[/tex] for odd l

Now: [tex]\int_0^1x^{2k-l}dx=\frac{1}{2k-l+1}x^{2k-l+1}[/tex] evaluated from 1 to 0:

That would equal:

[tex]\int_0^1x^{2k-l}dx=\frac{1}{2k-l+1}[/tex]

So now we have:

[tex]A_l=\frac{\left(2l+1\right)}{2^l l!}\sum_{k=\frac{l}{2},\frac{l+1}{2}}^{l}{\left(\frac{l !}{k!\left(l-k\right)!}\right)2k(2k-1)(2k-2)...(2k-(l-1))\left(-1\right)^{l-k}\frac{1}{2k-l+1}[/tex]

Which can be written as:

[tex]A_l=\frac{\left(2l+1\right)}{2^l l!}\sum_{k=\frac{l}{2},\frac{l+1}{2}}^{l}{\left(\frac{l !}{k!\left(l-k\right)!}\right)2k(2k-1)(2k-2)...(2k-(l-2))\left(-1\right)^{l-k}[/tex]

Now I still have that sum.

smiley-bangheadonwall.gif
 
Last edited by a moderator:
  • #6
You might want to re-read my last post; summing over [itex]j[/itex] instead of [itex]k[/itex] will probably make things easier for you...
 
  • #7
gabbagabbahey said:
You might want to re-read my last post; summing over [itex]j[/itex] instead of [itex]k[/itex] will probably make things easier for you...

I don't see how. It changes the limits on the sum:

[tex]A_l=\frac{\left(2l+1\right)}{2^l l!}\sum_{j=1}^{\frac{l+1}{2}}{\left(\frac{l !}{k!\left(l-k\right)!}\right)2k(2k-1)(2k-2)...(2k-(l-2))\left(-1\right)^{l-k}[/tex]

And all the k's become more complicated:

[tex]A_l=\frac{\left(2l+1\right)}{2^l l!}\sum_{j=1}^{\frac{l+1}{2}}{\left(\frac{l !}{\left(j+\frac{l-1}{2}\right)!\left(l-\left(j+\frac{l-1}{2}\right)\right)!}\right)2\left(j+\frac{l-1}{2}\right)(2\left(j+\frac{l-1}{2}\right)-1)(2\left(j+\frac{l-1}{2}\right)-2)...(2\left(j+\frac{l-1}{2}\right)-(l-2))\left(-1\right)^{l-\left(j+\frac{l-1}{2}\right)}[/tex]
 
  • #8
Why are you summing from [itex]j=1[/itex] to [itex]j=(l+1)/2[/itex]?:confused:

You started out with something like

[tex]A_l=\sum_{k=0}^{\infty}c_k\int_0^1\frac{d^l}{dx^l}x^{2k}dx=\sum_{k=0}^{\infty}c_k\left.\left[\frac{d^{l-1}}{dx^{l-1}}x^{2k}\right]\right|_0^1[/tex]

The terms for which [itex]2k<l-1[/itex] are all zero, and [itex]l[/itex] is odd (Remember, Jackson showed the [itex]A_l=0[/itex] for even [itex]l[/itex], so this sum is just to determine the odd coefficients), So the first [itex]\frac{l-1}{2}-1[/itex] terms of the sum are zero and you are left with:

[tex]A_l=\sum_{k=\frac{l-1}{2}}^{\infty}c_k\left.\left[\frac{d^{l-1}}{dx^{l-1}}x^{2k}\right]\right|_0^1[/tex]

So the substitution [itex]j=k-\frac{l-1}{2}[/itex]should give you

[tex]A_l=\sum_{j=0}^{\infty}c_{j+\frac{l-1}{2}}\left.\left[\frac{d^{l-1}}{dx^{l-1}}x^{2j+l-1}\right]\right|_0^1=\sum_{j=0}^{\infty}c_{j+\frac{l-1}{2}}\left.\left[(2j+l-1)(2j+l-2)\ldots(2j+1)x^{2j}\right]\right|_0^1=\sum_{j=0}^{\infty}c_{j+\frac{l-1}{2}}\frac{(2j+l-1)!}{(2j)!}[/tex]
 
Last edited:
  • #9
The sum doesn't go to infinity. Using k as the index variable, it goes from 0 to l:

[tex]
\frac{d^l}{dx^l}\sum_{k=0}^{l}{\left(\frac{l !}{k!\left(l-k\right)!}\right)x^{2k}\left(-1\right)^{l-k}}
[/tex]
 
  • #10
No, it goes to infinity. You need to review the binomial expansion.

[tex](x^2-1)^l=\sum_{k=0}^{\infty}{\left(\frac{l !}{k!\left(l-k\right)!}\right)x^{2k}\left(-1\right)^{l-k}}\neq\sum_{k=0}^{l}{\left(\frac{l !}{k!\left(l-k\right)!}\right)x^{2k}\left(-1\right)^{l-k}}[/tex]
 
  • #11
gabbagabbahey said:
No, it goes to infinity. You need to review the binomial expansion.

[tex](x^2-1)^l=\sum_{k=0}^{\infty}{\left(\frac{l !}{k!\left(l-k\right)!}\right)x^{2k}\left(-1\right)^{l-k}}\neq\sum_{k=0}^{l}{\left(\frac{l !}{k!\left(l-k\right)!}\right)x^{2k}\left(-1\right)^{l-k}}[/tex]

http://en.wikipedia.org/wiki/Binomial_theorem
 
  • #12
gabbagabbahey said:
Why are you summing from [itex]j=1[/itex] to [itex]j=(l+1)/2[/itex]?

Because if [tex]k=\frac{l-1}{2}[/tex], that term is zero. So the sum has to start at [tex]k=\frac{l+1}{2}[/tex].

If [tex]j=k-\frac{l-1}{2}[/tex], then the first term for j is when [tex]k=\frac{l+1}{2}[/tex]:

[tex]j=k-\frac{l-1}{2} = \frac{l+1}{2}-\frac{l-1}{2} = 1[/tex].

The last term is [tex]k = l[/tex]

So [tex]j=k-\frac{l-1}{2} = l-\frac{l-1}{2} = \frac{l+1}{2}[/tex]
 
  • #13
Bill Foster said:

Contrary to popular belief, wikipedia is not always the most accurate source for information.

Try this link instead. Or, better yet, break out your old calculus textbook.

Edit: After my morning cup of coffee, I realized that there is nothing wrong with only summing up to [itex]k=l[/itex]. However, the sum can be extended to infinity since [tex]\begin{pmatrix}l\\k\end{pmatrix}[/tex] is zero for [itex]k>l[/itex].
 
Last edited:
  • #14
gabbagabbahey said:
Contrary to popular belief, wikipedia is not always the most accurate source for information.

Try this link instead. Or, better yet, break out your old calculus textbook.

I would like to direct your attention to equation 2 in that link, and the text that immediately precedes it.

Edit: After my morning cup of coffee, I realized that there is nothing wrong with only summing up to [itex]k=l[/itex]. However, the sum can be extended to infinity since [tex]\begin{pmatrix}l\\k\end{pmatrix}[/tex] is zero for [itex]k>l[/itex].

It would only go to infinity if l goes to infinity.
 
  • #15
Anyways, can you agree that

[tex]A_l=-\frac{2l+1}{2^l}\sum_{j=0}^{j=\frac{l+1}{2}}\frac{(-1)^j(2j+l-1)!}{(j+\frac{l-1}{2})!(\frac{l+1}{2}-j)!(2j)!}[/tex]

?
 
  • #16
gabbagabbahey said:
Anyways, can you agree that

[tex]A_l=-\frac{2l+1}{2^l}\sum_{j=0}^{j=\frac{l+1}{2}}\frac{(-1)^j(2j+l-1)!}{(j+\frac{l-1}{2})!(\frac{l+1}{2}-j)!(2j)!}[/tex]

?

It looks clearer written in terms of k.
 
  • #17
Since [itex]l[/itex] is odd, make the substitution [itex]l=2n+1[/itex]...
 

FAQ: How to Simplify (3.25) using Rodrigues Formula and Evaluate the Derivative?

What are Jackson equations 3.25 and 3.26?

Jackson equations 3.25 and 3.26 are mathematical equations derived by American physicist John David Jackson in his book "Classical Electrodynamics". They are used to calculate the electric and magnetic fields produced by a moving point charge.

What are the applications of Jackson equations 3.25 and 3.26?

These equations are used in various fields of physics, such as particle physics, quantum mechanics, and electromagnetism. They are particularly useful in understanding the dynamics of charged particles in electromagnetic fields.

How do Jackson equations 3.25 and 3.26 differ from each other?

Jackson equation 3.25 calculates the electric field produced by a moving point charge, while equation 3.26 calculates the magnetic field. They differ in the constants and variables used, but both are based on the same fundamental principles of electromagnetism.

Can Jackson equations 3.25 and 3.26 be used for any type of charge?

Yes, these equations can be used for any type of charge, whether it is positive or negative. The equations take into account the charge's velocity and acceleration, regardless of its sign.

Are there any limitations to using Jackson equations 3.25 and 3.26?

Like any other mathematical model, these equations have their limitations. They are based on classical electromagnetism and do not take into account quantum effects. They also assume that the charged particle is moving in a vacuum and does not interact with other particles in its surroundings.

Back
Top