- #1
bugatti79
- 794
- 1
Folks,
Just struggling to see how this is simplified.
[tex]\frac{f''(x)}{((1+f'(x)^2)^{1/2}}-\frac{f'(x)^2 f''(x)}{((1+f'(x)^2)^{3/2}}=\frac{f''(x)}{((1+f'(x)^2)^{3/2}}[/tex]
if we let [tex]a=(1+f'(x)^2)^{1/2}[/tex] then I get as far as[tex]f''(x)[a^{-1/2}-f'(x)^2a^{-3/2}]=f''(x)[a^{-1/2}-f'(x)^2 a^{-1/2} a^{-1}][/tex]...
Just struggling to see how this is simplified.
[tex]\frac{f''(x)}{((1+f'(x)^2)^{1/2}}-\frac{f'(x)^2 f''(x)}{((1+f'(x)^2)^{3/2}}=\frac{f''(x)}{((1+f'(x)^2)^{3/2}}[/tex]
if we let [tex]a=(1+f'(x)^2)^{1/2}[/tex] then I get as far as[tex]f''(x)[a^{-1/2}-f'(x)^2a^{-3/2}]=f''(x)[a^{-1/2}-f'(x)^2 a^{-1/2} a^{-1}][/tex]...
Last edited: