- #1
Fred1230
- 2
- 1
Returning if I have to show the effort, I came to this:
[tex]\frac{\sin4\alpha}{1+\cos4\alpha}\cdot\frac{\cos2\alpha}{1+\cos2\alpha}\cdot\frac{\cos\alpha}{1+\cos\alpha}=\tan\frac{\alpha}{2}.[/tex]
=
[tex]\frac{\sin4\alpha}{\sin^2\alpha+cos^2\alpha+\cos4\alpha}\cdot\frac{(\sin^2\alpha+cos^2\alpha)-2sin^2\alpha}{\sin^2\alpha+cos^2\alpha+\cos2\alpha}\cdot\frac{\cos\alpha}{\sin^2\alpha+cos^2\alpha+\cos\alpha}=\frac{\sin\alpha^2}{\cos2\alpha}.[/tex]
I don't know how to use substitutions
[tex]\frac{\sin4\alpha}{1+\cos4\alpha}\cdot\frac{\cos2\alpha}{1+\cos2\alpha}\cdot\frac{\cos\alpha}{1+\cos\alpha}=\tan\frac{\alpha}{2}.[/tex]
=
[tex]\frac{\sin4\alpha}{\sin^2\alpha+cos^2\alpha+\cos4\alpha}\cdot\frac{(\sin^2\alpha+cos^2\alpha)-2sin^2\alpha}{\sin^2\alpha+cos^2\alpha+\cos2\alpha}\cdot\frac{\cos\alpha}{\sin^2\alpha+cos^2\alpha+\cos\alpha}=\frac{\sin\alpha^2}{\cos2\alpha}.[/tex]
I don't know how to use substitutions