- #1
ramsey2879
- 841
- 3
If p is prime > 2 then there is a easy way to solve 32n+3 = 0 mod p
if p = 1 mod 8 then m = (p-1)/4 and n = m(m+1)/2 mod p
if p = 3 mod 8 then m = (p-3)/4 and n = m(m+1)/2 mod p
if p = 5 mod 8 then m = (p-5)/8*2 + 1 and n = m(m+1)/2 mod p
if p = 7 mod 8 then m = (p-7)/8*2 + 1 and n = m(m+1)/2 mod p
Strange how triangular numbers relate to primes!
Can anyone give a proof for this relation?
if p = 1 mod 8 then m = (p-1)/4 and n = m(m+1)/2 mod p
if p = 3 mod 8 then m = (p-3)/4 and n = m(m+1)/2 mod p
if p = 5 mod 8 then m = (p-5)/8*2 + 1 and n = m(m+1)/2 mod p
if p = 7 mod 8 then m = (p-7)/8*2 + 1 and n = m(m+1)/2 mod p
Strange how triangular numbers relate to primes!
Can anyone give a proof for this relation?
Last edited: