MHB How to Solve a Geometric Sequence with Given Differences?

AI Thread Summary
To solve the geometric sequence problem, the differences between consecutive terms lead to a set of equations: a(1-r)=6, ar(1-r)=3, and ar^2(1-r)=3/2. With two unknowns, a and r, and three equations, the problem is overdetermined. A specific solution is found with a=12 and r=1/2, which satisfies all equations. However, in general, overdetermined problems may not have a unique solution.
rsyed5
Messages
5
Reaction score
0
I have no idea how to solve this equation, its in my homework... i know the formula to find the nth term(tn=ar^n-1) but don't know how to solve this:

The difference between the first term and second term in a geometric sequence is 6.The difference between the second term and the third term is 3. The difference between the third term and the fourth term is 3/2. Find the nth term in the sequence...

Thanks in advance:)
 
Mathematics news on Phys.org
We may state:

$$a-ar=6$$

$$ar-ar^2=3$$

We now have two equations and two unknowns. I suggest solving the first equation for $r$, then substitute into the second to get an equation in $a$ only, which you can then solve. Once you have determined the value of $a$, then use that in your expression for $r$ in terms of $a$ to get the value of $r$. Then use:

$$t_n=ar^{n-1}$$

for the $n$th term. :D
 
rsyed5 said:
I have no idea how to solve this equation, its in my homework... i know the formula to find the nth term(tn=ar^n-1) but don't know how to solve this:

The difference between the first term and second term in a geometric sequence is 6.The difference between the second term and the third term is 3. The difference between the third term and the fourth term is 3/2. Find the nth term in the sequence...

Thanks in advance:)

If the general term is $\displaystyle t_{n}= a\ r^{n-1}$ You have two unknown variables a and r and three equations...

$\displaystyle a\ (1-r)=6$

$\displaystyle a\ r\ (1-r)=3$

$\displaystyle a\ r^{2}\ (1-r)=\frac{3}{2}$

... so that the problem is overdimensioned. In this case the solution $\displaystyle a=12,\ r= \frac{1}{2}$ satisfies all the three equations, but in general for an overdimensioned problem an 'exact' solution doesn't exist... Kind regards $\chi$ $\sigma$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...

Similar threads

Back
Top