- #1
Markov2
- 149
- 0
Consider the equation
$\begin{aligned} & {{u}_{t}}=K{{u}_{xx}}+g(t),\text{ }0<x<L,\text{ }t>0, \\
& {{u}_{x}}(0,t)={{u}_{x}}(L,t)=0,\text{ }t>0 \\
& u(x,0)=f(x), \\
\end{aligned}
$
a) Show that $v=u-G(t)$ satisfies the initial value boundary problem where $G(t)$ is the primitive of $g(t)$ with $g(0)=0$
b) Find the solution when $g(t)=\cos wt$ and $f(x)=0.$
Attempts:
Okay so I have $g(t)=\displaystyle\int_0^t G(t)\,ds,$ is that how do I need to proceed?
$\begin{aligned} & {{u}_{t}}=K{{u}_{xx}}+g(t),\text{ }0<x<L,\text{ }t>0, \\
& {{u}_{x}}(0,t)={{u}_{x}}(L,t)=0,\text{ }t>0 \\
& u(x,0)=f(x), \\
\end{aligned}
$
a) Show that $v=u-G(t)$ satisfies the initial value boundary problem where $G(t)$ is the primitive of $g(t)$ with $g(0)=0$
b) Find the solution when $g(t)=\cos wt$ and $f(x)=0.$
Attempts:
Okay so I have $g(t)=\displaystyle\int_0^t G(t)\,ds,$ is that how do I need to proceed?