- #1
Rectifier
Gold Member
- 313
- 4
The problem
Solve ## e^x-e^{-x} = 6 ## .
The attempt
$$ e^x-e^{-x} = 6 \\ e^x(1-e^{-1}) = 6 \\ e^x = \frac{6}{(1-e^{-1})} \\ x = \ln \left( \frac{6}{1-e^{-1}} \right) \\ $$
The answer in the book is ## \ln(3 + \sqrt{10})##
Could someone help me?
Solve ## e^x-e^{-x} = 6 ## .
The attempt
$$ e^x-e^{-x} = 6 \\ e^x(1-e^{-1}) = 6 \\ e^x = \frac{6}{(1-e^{-1})} \\ x = \ln \left( \frac{6}{1-e^{-1}} \right) \\ $$
The answer in the book is ## \ln(3 + \sqrt{10})##
Could someone help me?