- #1
noospace
- 75
- 0
Homework Statement
[itex]\int_{0}^{2\pi} \frac{\cos^2\alpha}{A + \sin^2\alpha}d\alpha[/itex]
The Attempt at a Solution
I believe when the trig functions all appear squared one may use the substitution [itex] t =\tan \alpha[/itex]. Then
[itex]
t^2 + 1 = \sec^2\alpha \implies \cos^2\alpha = \frac{1}{t^2 +1}
[/itex]
[itex]
\sin^2\alpha = t^2\cos^2\alpha = \frac{t^2}{t^2+1}
[/itex]
[itex]
dt = \sec^2\alpha d\alpha \implies d\alpha = \frac{dt}{1 + t^2}
[/itex]
Now use
[itex]\int_{0}^{2\pi} = \int_0^\pi + \int_\pi^{2\pi} [/itex].
[itex]\int_{0}^{\pi} \frac{\cos^2\alpha}{A + \sin^2\alpha}d\alpha = \int_{0}^\infty\frac{dt}{A(1+t^2)^2 +t^2(1+t^2)}[/itex]
[itex]= \int_{0}^\infty\frac{dt}{(1+t^2)(A+t^2+At^2)}[/itex]
[itex]
1 = C_1(A+ (1+A)t^2) + C_2 (1+t^2) \implies C_1 = -1,C_2 = -\frac{1+A}{A}
[\latex]
[itex]I = \int_{0}^\infty \frac{-1}{1+t^2}- \frac{(1+A)/A}{A+(1+A)t^2}[/itex]
[itex]I = - \frac{\pi}{2}- (1+A)/A\int_{0}^\infty\frac{dt}{A+(1+A)t^2}[/itex]
[itex]I = - \frac{\pi}{2}- \frac{(1+A)/A}{\sqrt{1+A}}\frac{1}{\sqrt{A}}\left.\tan^{-1}\frac{t}{\sqrt{A}}\right|_{0}^\inft[/itex]
[itex]I = - \frac{\pi}{2}- \frac{(1+A)/A}{\sqrt{1+A}}\frac{1}{\sqrt{A}}\frac{\pi}{2}[/itex]
Thanks.
Last edited: