- #1
UrbanXrisis
- 1,196
- 1
[tex]\int \frac {cos(\sqrt{x})}{\sqrt{x}}dx =?[/tex]
Here's what I did:
[tex]= \int x^{-0.5}cosx^{0.5}dx [/tex]
subsitute:
[tex]u= cos(\sqrt{x})[/tex]
[tex]du=-sin(\sqrt{x})(0.5x^{-0.5})dx[/tex]
[tex]-\frac {1}{0.5sin(\sqrt{x})}\int u du[/tex]
[tex]-\frac{2}{sin(\sqrt{x})} 0.5cos^2(\sqrt{x})[/tex]
[tex]-\frac{1}{sin(\sqrt{x})}cos^2(\sqrt{x})[/tex]
I know I did this wrong. Any suggestions?
Here's what I did:
[tex]= \int x^{-0.5}cosx^{0.5}dx [/tex]
subsitute:
[tex]u= cos(\sqrt{x})[/tex]
[tex]du=-sin(\sqrt{x})(0.5x^{-0.5})dx[/tex]
[tex]-\frac {1}{0.5sin(\sqrt{x})}\int u du[/tex]
[tex]-\frac{2}{sin(\sqrt{x})} 0.5cos^2(\sqrt{x})[/tex]
[tex]-\frac{1}{sin(\sqrt{x})}cos^2(\sqrt{x})[/tex]
I know I did this wrong. Any suggestions?
Last edited: