How to Solve Commutators Using the Jacobian?

AI Thread Summary
The discussion centers on solving commutators involving position and momentum operators, specifically using the Jacobi identity and other commutation relations. Participants express confusion about the application of the Jacobi identity and the correct order of operations when dealing with these operators. It is clarified that the momentum operator acts on everything to its right, which is crucial for accurate calculations. The importance of substituting the known commutation relations, such as [x, px] = iħ, is emphasized to simplify the expressions. Ultimately, understanding the operator behavior and the correct application of commutation rules is essential for solving the given problems effectively.
  • #51
Oh right, I confused just derivative with applying the operator:P
 
Physics news on Phys.org
  • #52
it came down to ##-i\hbar(\frac{\partial g}{\partial x})=-i\hbar (-i\hbar\frac{\partial \psi}{\partial x})##, which is basically a half of the result, so it is correct, right?
 
Last edited:
  • #53
Rorshach said:
##-i\hbar x\frac{\partial x}{\partial x}##
That's not correct. Where's you get ##\frac{\partial x}{\partial x}## from?
 
  • #54
I just made a mistake while writing the result in code, it should be ##-i\hbar x\frac{\partial \psi}{\partial x}##
 
  • #55
OK, so what do you get when you differentiate that?
 
  • #56
##-i\hbar\frac{\partial \psi}{\partial x}##
 
  • #57
How'd you get that?
 
  • #58
I differentiated it by x, but from my experience I again made a mistake somewhere...
 
  • #59
What if you wrote ##g=xf##? What do you get when you differentiate g?
 
  • #60
oh shoot... it is ##x\frac{\partial f}{\partial x}+f##... but it only complicates the matter, now I have ##-i\hbar(x\frac{\partial f}{\partial x}-i\hbar\frac{\partial \psi}{\partial x})##
 
  • #61
That's only the first term (with some typos, I hope). You still have to subtract off the result from the xp term.
 
  • #62
Now I'm completely lost. I repeated that calculation and got the same result, I cannot see the mistake. I thought that xp term was included in that ##-i\hbar\frac{\partial g}{\partial x}## combination?
 
  • #63
my mistake again, forgot about the second term in the bracket. But I cannot use g substitution, since x is on the left side of the operator, I can only use f. What can I do with this?
 
  • #64
Try starting over from the beginning now. You began with
$$[p^2,x]\psi = (p[p,x]+[p,x]p)\psi = p[p,x]\psi + [p,x]p\psi.$$ Now redo your calculations for ##p[p,x]\psi## and ##[p,x]p\psi##.
 
  • #65
the result for the first term was correct, it came out as ##-\hbar^2\psi\frac{\partial \psi}{\partial x}##. I just have problem with the second term, because I can't think of the solution with changed order of the operator...how to bite this?
 
Last edited:
  • #66
I think I finally did it. Here it goes: ##-i\hbar\frac{\partial }{\partial x}(-i\hbar\frac{\partial x\psi}{\partial x}+i\hbar x\frac{\partial \psi}{\partial x})+(-i\hbar\frac{\partial xf}{\partial x}+i\hbar x\frac{\partial f}{\partial x})##, where we let ##f=-i\hbar\frac{\partial \psi}{\partial x}##. Then it goes on:
##-i\hbar\frac{\partial }{\partial x}(-i\hbar(x\frac{\partial \psi}{\partial x}+\psi\frac{\partial x}{\partial x})+i\hbar x\frac{\partial \psi}{\partial x})+(-i\hbar(x\frac{\partial f}{\partial x}+f\frac{\partial x}{\partial x})+i\hbar x\frac{\partial f}{\partial x})##, proceeding
##-i\hbar\frac{\partial }{\partial x}(-i\hbar x\frac{\partial \psi}{\partial x}-i\hbar\psi+i\hbar x\frac{\partial \psi}{\partial x})+(i\hbar x\frac{\partial f}{\partial x}-i\hbar f+i\hbar x\frac{\partial f}{\partial x})##, and then
##-\hbar^2\frac{\partial \psi}{\partial x}+(-i\hbar f)=-\hbar^2\frac{\partial \psi}{\partial x}-(-i\hbar\frac{\partial \psi}{\partial x})=-\hbar^2\frac{\partial \psi}{\partial x}-\hbar^2\frac{\partial \psi}{\partial x}=-2\hbar\frac{\partial \psi}{\partial x}##.
Please tell me that this time I am right.
 
  • #67
Just a few minor errors, probably typos, and you're not quite done.
Rorshach said:
I think I finally did it. Here it goes:
$$-i\hbar\frac{\partial }{\partial x}(-i\hbar\frac{\partial x\psi}{\partial x}+i\hbar x\frac{\partial \psi}{\partial x})+(-i\hbar\frac{\partial xf}{\partial x}+i\hbar x\frac{\partial f}{\partial x}),$$ where we let ##f=-i\hbar\frac{\partial \psi}{\partial x}##. Then it goes on:
$$-i\hbar\frac{\partial }{\partial x}(-i\hbar(x\frac{\partial \psi}{\partial x}+\psi\frac{\partial x}{\partial x})+i\hbar x\frac{\partial \psi}{\partial x})+(-i\hbar(x\frac{\partial f}{\partial x}+f\frac{\partial x}{\partial x})+i\hbar x\frac{\partial f}{\partial x})$$
$$-i\hbar\frac{\partial }{\partial x}(-i\hbar x\frac{\partial \psi}{\partial x}-i\hbar\psi+i\hbar x\frac{\partial \psi}{\partial x})+({\color{red}-}i\hbar x\frac{\partial f}{\partial x}-i\hbar f+i\hbar x\frac{\partial f}{\partial x})$$
$$-\hbar^2\frac{\partial \psi}{\partial x}+(-i\hbar f)
= \hbar^2\frac{\partial \psi}{\partial x}-{\color{red} {(i\hbar)}}(-i\hbar\frac{\partial \psi}{\partial x})
= -\hbar^2\frac{\partial \psi}{\partial x}-\hbar^2\frac{\partial \psi}{\partial x}
= -2\hbar^{\color{red}2} \frac{\partial \psi}{\partial x}$$.
Please tell me that this time I am right.
Now use the fact that ##-\hbar^2 = (-ih)^2## and rewrite the final result in terms of ##\hat{p}_x## to show that ##[\hat{p}_x^2,\hat{x}] = (-i\hbar)2\hat{p}_x##.
 
  • #68
I don't quite understand what do You mean by presenting it in terms of ##p_x##, I thought that my calculations (without those stupid typos) are enough to show the correct result?
 
  • #69
Well, ask yourself what you're trying to show. The problem asks you to calculate ##[\hat{p}_x^2,\hat{x}]## which is equal to ##-2i\hbar \hat{p}_x##. You haven't shown that. You've shown that when you work in the position basis, the action of ##[\hat{p}_x^2,\hat{x}]## on some arbitrary function ##\psi(x)## is to differentiate it and multiply it by ##-2\hbar^2##. You need to show that that's equivalent to applying ##\hat{p}## and multiplying by ##-2i\hbar##.
 
  • #70
So basically I should take function ##\psi(x)##, act on it with ##\hat{p}## and multiply it by ##-2i\hbar##?
 
Back
Top