- #1
Euge
Gold Member
MHB
POTW Director
- 2,073
- 243
Here is this week's POTW:
-----
Let $(X,\mu)$ be a measure space, $f\in \mathcal{L}^1(\mu)$, and $\phi_n\in \mathcal{L}^1(\mu)$ such that $\sup_{n,t}\lvert \phi_n(t)\rvert \le 1$ and $\|\phi_n\|_1 \to 0$ as $n\to \infty$. Show that $\|f\phi_n\|_1 \to 0$ as $n\to \infty$.-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
-----
Let $(X,\mu)$ be a measure space, $f\in \mathcal{L}^1(\mu)$, and $\phi_n\in \mathcal{L}^1(\mu)$ such that $\sup_{n,t}\lvert \phi_n(t)\rvert \le 1$ and $\|\phi_n\|_1 \to 0$ as $n\to \infty$. Show that $\|f\phi_n\|_1 \to 0$ as $n\to \infty$.-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!