- #1
Bestfrog
Moved from a technical forum, so homework template missing
Find ##a,b,c \in \mathbb{R}## such that
$$e^{\sqrt{n+2}-\sqrt{n}} -1 + cos(n^{-4})=a+\frac{b}{\sqrt{n}} + \frac{c}{n}=o(\frac{1}{n})$$I put ##e^{\sqrt{n+2}-\sqrt{n}} \longrightarrow 1##
and ##-1 + cos(n^{-4})=-\frac{1}{2 \sqrt{n}} + o(\frac{1}{n})##, so maybe ##a=1## and ##b=-\frac{1}{2}## but it's wrong!
(The solutions must be ##a=1##, ##b=\frac{1}{2}## and ##c=\frac{13}{24}##)
Any hint?
$$e^{\sqrt{n+2}-\sqrt{n}} -1 + cos(n^{-4})=a+\frac{b}{\sqrt{n}} + \frac{c}{n}=o(\frac{1}{n})$$I put ##e^{\sqrt{n+2}-\sqrt{n}} \longrightarrow 1##
and ##-1 + cos(n^{-4})=-\frac{1}{2 \sqrt{n}} + o(\frac{1}{n})##, so maybe ##a=1## and ##b=-\frac{1}{2}## but it's wrong!
(The solutions must be ##a=1##, ##b=\frac{1}{2}## and ##c=\frac{13}{24}##)
Any hint?