- #1
juantheron
- 247
- 1
$(a)\;\;:: \displaystyle \int\frac{1}{\left(x+\sqrt{x\cdot (x+1)}\right)^2}dx$
$(b)\;\;::\displaystyle \int\frac{1}{(x^4-1)^2}dx$
My Trial :: (a) $\displaystyle \int\frac{1}{(x+\sqrt{x\cdot (x+1)})^2}dx$
$\displaystyle \int\frac{1}{x\left(\sqrt{x}+\sqrt{x+1}\right)^2}dx = \int\frac{1}{x\cdot (x+x+1+2\sqrt{x^2+x})}dx$
$\displaystyle = \frac{1}{2}\int\frac{1}{x\cdot \left(x+0.5 + \sqrt{(x+0.5)^2-(0.5)^2}\right)}dx$
Now I did not understand how can i solve it,
Help me
Thanks
Similarly for (b) $\displaystyle \int\frac{1}{(x^2+1)^2\cdot (x+1)^2 \cdot (x-1)^2}$
But Using Partial fraction, It become very Complex, Is any other way by which we cal solve it
please explain here
Thanks
$(b)\;\;::\displaystyle \int\frac{1}{(x^4-1)^2}dx$
My Trial :: (a) $\displaystyle \int\frac{1}{(x+\sqrt{x\cdot (x+1)})^2}dx$
$\displaystyle \int\frac{1}{x\left(\sqrt{x}+\sqrt{x+1}\right)^2}dx = \int\frac{1}{x\cdot (x+x+1+2\sqrt{x^2+x})}dx$
$\displaystyle = \frac{1}{2}\int\frac{1}{x\cdot \left(x+0.5 + \sqrt{(x+0.5)^2-(0.5)^2}\right)}dx$
Now I did not understand how can i solve it,
Help me
Thanks
Similarly for (b) $\displaystyle \int\frac{1}{(x^2+1)^2\cdot (x+1)^2 \cdot (x-1)^2}$
But Using Partial fraction, It become very Complex, Is any other way by which we cal solve it
please explain here
Thanks