- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
I have a question.. (Wasntme)
When we have the following boundary value problem:
$$u_{xx}+u_{yy}=0, 0<x<a, 0<y<b (1)$$
$$u_x(0,y)=u_x(a,y)=0, 0<y<b$$
$$u(x,0)=x, u_y(x,b)=0, 0<x<a$$using the method of separation of variables, the solution would be of the form $u(x,y)=X(x) \cdot Y(y)$
$$(1) \Rightarrow X''Y+XY''=0 \Rightarrow \frac{X''}{X}+\frac{Y''}{Y}=0 \Rightarrow \frac{X''}{X}=- \frac{Y''}{Y}=- \lambda$$
So we have the following problems:
$$\left.\begin{matrix}
X''+\lambda X=0, 0<x<a\\
X'(0)=X'(a)=0
\end{matrix}\right\}(2)$$
and
$$\left.\begin{matrix}
Y''-\lambda Y=0, 0<y<b\\
Y'(b)=0
\end{matrix}\right\}(3)$$
$$u(x,0)=X(x)Y(0)=x$$
So solving the problem $(2)$ we get the eigenvalues and the corresponding eigenfunctions.
If we have the following boundary value problem:
$$u_{xx}+u_{yy}=0, 0<x<1, 0<y<1 (1')$$
$$u(0,y)=0, u(1,y)= \sin{(\pi y)} \cos{(\pi y)}, 0<y<1$$
$$u(x,0)=u(x,1)=0, 0<x<1$$
using the method of separation of variables, the solution would be of the form $u(x,y)=X(x) \cdot Y(y)$
$$(1') \Rightarrow X''Y+XY''=0 \Rightarrow \frac{X''}{X}+\frac{Y''}{Y}=0 \Rightarrow \frac{X''}{X}=- \frac{Y''}{Y}= \lambda$$
So we have the following problems:
$$\left.\begin{matrix}
X''-\lambda X=0, 0<x<1\\
X(0)=0
\end{matrix}\right\}(2')$$
and
$$\left.\begin{matrix}
Y''+\lambda Y=0, 0<y<1\\
Y(0)=Y(1)=0
\end{matrix}\right\}(3')$$
$$u(1,y)=X(1)Y(y)= \sin{(\pi y)} \cos{(\pi y)}$$
So do we have to solve in this case the problem $(3')$ to find the eigenvalues nd the corresponding eigenfunctions?
Or did I have to set $\frac{X''}{X}=- \frac{Y''}{Y}=- \lambda$ instead of $\frac{X''}{X}=- \frac{Y''}{Y}= \lambda$, as at the other boundary value problem? (Wondering)
I have a question.. (Wasntme)
When we have the following boundary value problem:
$$u_{xx}+u_{yy}=0, 0<x<a, 0<y<b (1)$$
$$u_x(0,y)=u_x(a,y)=0, 0<y<b$$
$$u(x,0)=x, u_y(x,b)=0, 0<x<a$$using the method of separation of variables, the solution would be of the form $u(x,y)=X(x) \cdot Y(y)$
$$(1) \Rightarrow X''Y+XY''=0 \Rightarrow \frac{X''}{X}+\frac{Y''}{Y}=0 \Rightarrow \frac{X''}{X}=- \frac{Y''}{Y}=- \lambda$$
So we have the following problems:
$$\left.\begin{matrix}
X''+\lambda X=0, 0<x<a\\
X'(0)=X'(a)=0
\end{matrix}\right\}(2)$$
and
$$\left.\begin{matrix}
Y''-\lambda Y=0, 0<y<b\\
Y'(b)=0
\end{matrix}\right\}(3)$$
$$u(x,0)=X(x)Y(0)=x$$
So solving the problem $(2)$ we get the eigenvalues and the corresponding eigenfunctions.
If we have the following boundary value problem:
$$u_{xx}+u_{yy}=0, 0<x<1, 0<y<1 (1')$$
$$u(0,y)=0, u(1,y)= \sin{(\pi y)} \cos{(\pi y)}, 0<y<1$$
$$u(x,0)=u(x,1)=0, 0<x<1$$
using the method of separation of variables, the solution would be of the form $u(x,y)=X(x) \cdot Y(y)$
$$(1') \Rightarrow X''Y+XY''=0 \Rightarrow \frac{X''}{X}+\frac{Y''}{Y}=0 \Rightarrow \frac{X''}{X}=- \frac{Y''}{Y}= \lambda$$
So we have the following problems:
$$\left.\begin{matrix}
X''-\lambda X=0, 0<x<1\\
X(0)=0
\end{matrix}\right\}(2')$$
and
$$\left.\begin{matrix}
Y''+\lambda Y=0, 0<y<1\\
Y(0)=Y(1)=0
\end{matrix}\right\}(3')$$
$$u(1,y)=X(1)Y(y)= \sin{(\pi y)} \cos{(\pi y)}$$
So do we have to solve in this case the problem $(3')$ to find the eigenvalues nd the corresponding eigenfunctions?
Or did I have to set $\frac{X''}{X}=- \frac{Y''}{Y}=- \lambda$ instead of $\frac{X''}{X}=- \frac{Y''}{Y}= \lambda$, as at the other boundary value problem? (Wondering)