- #1
Ad VanderVen
- 169
- 13
- TL;DR Summary
- How to solve the integral ##\int_{0}^{x}\!-{\frac {\lambda\,{{\rm e}^{-\lambda\,t}}{\beta}^{\alpha} \left( -\lambda+\beta \right) ^{-\alpha} \left( -\Gamma \left( \alpha \right) +\Gamma \left( \alpha, \left( -\lambda+\beta \right) t \right) \right)}{\Gamma \left( \alpha \right) }}\,{\rm d}t##
I would like to solve the integral underneath:
$$\displaystyle \int_{0}^{x}\!-{\frac {\lambda\,{{\rm e}^{-\lambda\,t}}{\beta}^{\alpha} \left( -\lambda+\beta \right) ^{-\alpha} \left( -\Gamma \left( \alpha \right) +\Gamma \left( \alpha, \left( -\lambda+\beta \right) t \right) \right)}{\Gamma \left( \alpha \right) }}\,{\rm d}t$$
I tried it before using Integration by Substitution, but that didn't help either.
$$\displaystyle \int_{0}^{x}\!-{\frac {\lambda\,{{\rm e}^{-\lambda\,t}}{\beta}^{\alpha} \left( -\lambda+\beta \right) ^{-\alpha} \left( -\Gamma \left( \alpha \right) +\Gamma \left( \alpha, \left( -\lambda+\beta \right) t \right) \right)}{\Gamma \left( \alpha \right) }}\,{\rm d}t$$
I tried it before using Integration by Substitution, but that didn't help either.
Last edited: