- #1
tworitdash
- 108
- 26
From my physical problem, I ended up having a sum that looks like the following.
[tex] S_N(\omega) = \sum_{q = 1}^{N-1} \left(1 - \frac{q}{N}\right) \exp{\left(-\frac{q^2\sigma^2}{2}\right)} \cos{\left(\left(\mu - \omega\right)q\right)} [/tex]
I want to know what is the sum when [itex]N \to \infty[/itex]. Here, [itex]\omega[/itex] is where this is computed and [itex]\mu[/itex] and [itex]\sigma[/itex] are constants. Can this be reduced to an expression (a function of variables [itex]\omega[/itex], [itex]\mu[/itex] and [itex]\sigma[/itex]) ?
I proceeded with trying to show that it is indeed convergent. [tex] S_N(\omega) - S_{N - 1}(\omega) = (1 - \frac{N-1}{N}) \exp{\left(-\frac{(N-1)^2\sigma^2}{2}\right)} \cos{\left(\left(\mu - \omega\right)(N-1)\right)} + \sum_{q = 1}^{N-2} q(\frac{1}{N-1} - \frac{1}{N}) \exp{\left(-\frac{q^2\sigma^2}{2}\right)} \cos{\left(\left(\mu - \omega\right)q\right)}[/tex]
This difference goes to [itex]0[/itex] when [itex]N \to \infty[/itex].
[tex] S_N(\omega) = \sum_{q = 1}^{N-1} \left(1 - \frac{q}{N}\right) \exp{\left(-\frac{q^2\sigma^2}{2}\right)} \cos{\left(\left(\mu - \omega\right)q\right)} [/tex]
I want to know what is the sum when [itex]N \to \infty[/itex]. Here, [itex]\omega[/itex] is where this is computed and [itex]\mu[/itex] and [itex]\sigma[/itex] are constants. Can this be reduced to an expression (a function of variables [itex]\omega[/itex], [itex]\mu[/itex] and [itex]\sigma[/itex]) ?
I proceeded with trying to show that it is indeed convergent. [tex] S_N(\omega) - S_{N - 1}(\omega) = (1 - \frac{N-1}{N}) \exp{\left(-\frac{(N-1)^2\sigma^2}{2}\right)} \cos{\left(\left(\mu - \omega\right)(N-1)\right)} + \sum_{q = 1}^{N-2} q(\frac{1}{N-1} - \frac{1}{N}) \exp{\left(-\frac{q^2\sigma^2}{2}\right)} \cos{\left(\left(\mu - \omega\right)q\right)}[/tex]
This difference goes to [itex]0[/itex] when [itex]N \to \infty[/itex].
Last edited: