- #1
sjombol
- 2
- 0
How to translate r = 2 /(2 - cos(theta)) to cartesian coordinates:
so far:
r = 2 /(2 - cos(theta))
r = 2 /(2 - cos(theta)) |* (2 - cos(theta)) both sides
r (2 - cos(theta))= 2
2*r - rcos(theta) = 2 | know x = rcos(theta)
2*r - x = 2 | know r^2 = x^2 + y^2
2*(x^2 + y^2)^1/2 - x = 2 | : 2
(x^2 + y^2)^1/2 - x/2 = 1 | opens the parentheses
x^2*1/2 + y^2*1/2 - x/2 = 1
x + y - x/2 = 1
y = 1 - x/2 | is this the solution?
Thank you in advance for help.
Regards
sjombol
so far:
r = 2 /(2 - cos(theta))
r = 2 /(2 - cos(theta)) |* (2 - cos(theta)) both sides
r (2 - cos(theta))= 2
2*r - rcos(theta) = 2 | know x = rcos(theta)
2*r - x = 2 | know r^2 = x^2 + y^2
2*(x^2 + y^2)^1/2 - x = 2 | : 2
(x^2 + y^2)^1/2 - x/2 = 1 | opens the parentheses
x^2*1/2 + y^2*1/2 - x/2 = 1
x + y - x/2 = 1
y = 1 - x/2 | is this the solution?
Thank you in advance for help.
Regards
sjombol