How to turn partition sum into an integral?

  • #1
LightPhoton
2
3
Homework Statement
How to evaluate partition sum in the limit where $$kT\gg\epsilon$$
Relevant Equations
$$Z_{tot}=\sum_0^\infty (2j+1)e^{-j(j+1)\epsilon/kT}$$
In, *An Introduction to Thermal Physics, page 235*, Schroder wants to evaluate the partition function

$$Z_{tot}=\sum_0^\infty (2j+1)e^{-j(j+1)\epsilon/kT}$$

in the limit that $kT\gg\epsilon$, thus he writes

$$Z_{tot}\approx\int_0^\infty (2j+1)e^{-j(j+1)\epsilon/kT}\,dj$$

But how is this correct? There was no factor of $j$ in the sum that could be replaced with $dj$. Also, it is good that $j$ is just a number, otherwise even the dimensions of $Z_{tot}$ would be wrong.
 
Physics news on Phys.org
  • #2
LightPhoton said:
There was no factor of ##j## in the sum that could be replaced with ##dj##.
Yes, there is such a factor if you express "##1##" in terms of the summation index "##j##":$$Z_{tot}=\sum_{0}^{\infty}(2j+1)e^{-j(j+1)\epsilon/kT}\times1=\sum_{0}^{\infty}(2j+1)e^{-j(j+1)\epsilon/kT}\left((j+1)-j\right)\equiv\sum_{0}^{\infty}(2j+1)e^{-j(j+1)\epsilon/kT}\triangle j$$Now can you see how the integral approximates the sum?
 
  • Like
Likes LightPhoton

Similar threads

  • Advanced Physics Homework Help
Replies
2
Views
1K
  • Advanced Physics Homework Help
Replies
1
Views
1K
  • Advanced Physics Homework Help
Replies
1
Views
1K
  • Advanced Physics Homework Help
Replies
1
Views
713
  • Advanced Physics Homework Help
Replies
3
Views
1K
  • Advanced Physics Homework Help
Replies
4
Views
1K
  • Advanced Physics Homework Help
Replies
1
Views
1K
  • Other Physics Topics
Replies
1
Views
1K
  • Advanced Physics Homework Help
Replies
4
Views
2K
  • Advanced Physics Homework Help
Replies
5
Views
2K
Back
Top