- #1
Another1
- 40
- 0
\[ \frac{\partial \dot{r}}{\partial \dot{q_k}} = \frac{\partial r}{\partial q_k} \]
where
\[ r = r(q_1,...,q_n,t \]
solution
\[ \frac{dr }{dt } = \frac{\partial r}{\partial t} + \sum_{i} \frac{\partial r}{\partial q_i}\frac{\partial q_i}{\partial t}\]
\[ \dot{r} = \frac{\partial r}{\partial t} + \sum_{i} \frac{\partial r}{\partial q_i}\dot{q_i}\]
let
\[ \frac{\partial\dot{r}}{\partial \dot{q_k}} = \frac{\partial^2r}{\partial\dot{q_k} \partial t} +\frac{\partial}{\partial \dot{q_k}} ( \frac{\partial r}{\partial q_1} \dot{q_1} + ... + \frac{\partial r}{\partial q_k} \dot{q_k} + ... + \frac{\partial r}{\partial q_n} \dot{q_n} ) \]
I think
\[\frac{\partial^2r}{\partial\dot{q_k} \partial t} = 0 \]
and
\[ \frac{\partial}{\partial \dot{q_k}} ( \frac{\partial r}{\partial q_n} \dot{q_n}) = 0\]for k not equal to n
where
\[ r = r(q_1,...,q_n,t \]
solution
\[ \frac{dr }{dt } = \frac{\partial r}{\partial t} + \sum_{i} \frac{\partial r}{\partial q_i}\frac{\partial q_i}{\partial t}\]
\[ \dot{r} = \frac{\partial r}{\partial t} + \sum_{i} \frac{\partial r}{\partial q_i}\dot{q_i}\]
let
\[ \frac{\partial\dot{r}}{\partial \dot{q_k}} = \frac{\partial^2r}{\partial\dot{q_k} \partial t} +\frac{\partial}{\partial \dot{q_k}} ( \frac{\partial r}{\partial q_1} \dot{q_1} + ... + \frac{\partial r}{\partial q_k} \dot{q_k} + ... + \frac{\partial r}{\partial q_n} \dot{q_n} ) \]
I think
\[\frac{\partial^2r}{\partial\dot{q_k} \partial t} = 0 \]
and
\[ \frac{\partial}{\partial \dot{q_k}} ( \frac{\partial r}{\partial q_n} \dot{q_n}) = 0\]for k not equal to n