- #36
ultrauser
- 23
- 0
The same example as above:
u-velocities before interaction
v-velocities after interaction
So I know
m1=100kg u1=0m/s
m2=10kg u2=10m/s
\begin{equation}
v_1 = \frac{u_1(m_1-m_2) + 2m_2u_2}{m_1+m_2};\\
v_2 = \frac{u_2(m_2-m_1) + 2m_1u_1}{m_1+m_2}; \end{equation}
\begin{equation}
v_1 = \frac{0(100-10) + 2*10*10}{100+10};\\
v_2 = \frac{10(10-100) + 2*100*0}{100+10}; \end{equation}
\begin{equation}
v_1= \frac{200}{110}=1.(81)\frac{m}{s}
\end{equation}
\begin{equation}
v_2= \frac{-900}{110}=-8.(18)\frac{m}{s}
\end{equation}
So does it mean first planetoid will now travel at 1.(81)m/s in left direction and second at -8.(18)m/s in right direction (I guess "-" mean it will reflect and travel into direction opposite to the direction before impact) ?
These are very different results from attempt I made before and I used the same data ( I can't get it why previous method gives such different results)
u-velocities before interaction
v-velocities after interaction
So I know
m1=100kg u1=0m/s
m2=10kg u2=10m/s
\begin{equation}
v_1 = \frac{u_1(m_1-m_2) + 2m_2u_2}{m_1+m_2};\\
v_2 = \frac{u_2(m_2-m_1) + 2m_1u_1}{m_1+m_2}; \end{equation}
\begin{equation}
v_1 = \frac{0(100-10) + 2*10*10}{100+10};\\
v_2 = \frac{10(10-100) + 2*100*0}{100+10}; \end{equation}
\begin{equation}
v_1= \frac{200}{110}=1.(81)\frac{m}{s}
\end{equation}
\begin{equation}
v_2= \frac{-900}{110}=-8.(18)\frac{m}{s}
\end{equation}
So does it mean first planetoid will now travel at 1.(81)m/s in left direction and second at -8.(18)m/s in right direction (I guess "-" mean it will reflect and travel into direction opposite to the direction before impact) ?
These are very different results from attempt I made before and I used the same data ( I can't get it why previous method gives such different results)