How to understand typo in MIT OCW chapter on Poynting vector?

AI Thread Summary
The discussion focuses on a potential typo in the MIT OCW chapter on the Poynting vector, specifically in the equations related to energy density and the Poynting vector. A participant highlights confusion over the transition from one equation to another, particularly regarding the factor of c. Clarification is provided that the relationship E = cB should be applied, which simplifies the equations and resolves the apparent discrepancy. The importance of accurately expressing the Poynting vector as a product of E and B is emphasized, as it reflects the energy current in electromagnetic waves. Overall, the discussion underscores the need for careful attention to detail in mathematical expressions within physics.
zenterix
Messages
774
Reaction score
84
Homework Statement
While reading a chapter about Poynting vector I reached a passage with what seems like a typo.
Relevant Equations
If it is a typo, I am still not sure how to fix it.

If it is not, then I am not sure what exactly was done in the algebra.
Here is a chapter from MIT OCW's 8.02 Electromagnetism course.

At the end of page 14 is section 13.6 "Poynting Vector". The calculations I am interested in are on page 15.

There is a passage that seems to have a typo in it. Let me try to show why despite recognizing a typo I am unsure of what the correct version would be.

Consider a plane wave passing through the infinitesimal volume element below

1716466499436.png


The total energy in the EM fields in the volume element is

$$dU=UAdx=(U_E+U_B)Adx=\left (\frac{1}{2}\epsilon_0E^2+\frac{1}{2\mu_0}B^2\right )Adx\tag{1}$$

$$=\frac{1}{2}\left (\epsilon_0E^2+\frac{B^2}{\mu_0}\right )Adx\tag{2}$$

The rate of change of energy per unit area is

$$S=\frac{dU}{dt}\frac{1}{A}=\frac{c}{2}\left (\epsilon_0E^2+\frac{B^2}{\mu_0}\right )\tag{2a}$$

where I have used the fact that the EM wave is traveling with speed ##c## and so ##dx=cdt##.

It can be shown that ##\frac{E}{B}=c=\frac{1}{\sqrt{\epsilon_0mu_0}}##, the speed of light.

The chapter then rewrites (2) but the expression seems to contain a typo. Here is the exact passage as it appears in the chapter

$$S=\frac{1}{2}\left (\epsilon_0E^2+\frac{B^2}{\mu_0}\right )=\frac{cB^2}{\mu_0}=c\epsilon_0E^2=\frac{EB}{\mu_0}\tag{3}$$

When I rewrite (2) I get

$$S=\frac{1}{2}\left (c\epsilon_0E^2+c\frac{B^2}{\mu_0}\right )$$

$$=\frac{1}{2}\left (\epsilon_0\frac{E^3}{B}+\frac{EB}{\mu_0}\right )$$

What am I missing?
 
Last edited:
Physics news on Phys.org
Where did the added factor of c come from in your rewrite of equation (2)?
 
zenterix said:
$$S=\frac{1}{2}\left (\epsilon_0E^2+\frac{B^2}{\mu_0}\right )Adx=\frac{cB^2}{\mu_0}=c\epsilon_0E^2=\frac{EB}{\mu_0}\tag{3}$$

First of all, you have brought along an ##A\, dx## here that should be divided by ##A\, dt## in the first expression. Try to keep away from such mistakes as they lead to confusion as displayed in post #2.

zenterix said:
When I rewrite (2) I get

$$S=\frac{1}{2}\left (c\epsilon_0E^2+c\frac{B^2}{\mu_0}\right )$$

$$=\frac{1}{2}\left (\epsilon_0\frac{E^3}{B}+\frac{EB}{\mu_0}\right )$$

What am I missing?
You are missing that ##E = cB## so take ##E^2 = c^2 B^2## in the first term and it also becomes the same as the second term - resulting in cancelling the 1/2 in front.

The reason to write it as a product of ##E## and ##B## and not any other powers is that the Poynting vector is proportional to ##\vec E \times \vec B##. The Poynting vector is more general than what they are showing in this particular passage and you cannot get it directly from this argument (although you can use the argument to verify that the Poynting vector indeed describes the expected energy current for the particular situation).
 
@phyzguy I forgot one step. It is there now, equation (2a).
 
Orodruin said:
You are missing that E=cB so take E2=c2B2 in the first term and it also becomes the same as the second term - resulting in cancelling the 1/2 in front.
Ah yes. I need to get some sleep that is what I need to do. Then maybe I won't miss such things.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top