- #1
LeoJakob
- 24
- 2
The following is an example from my script. I always have trouble identifying useful symmetries. Can someone explain to me why (for example) the vector potential doesn't have a ##z## dependence? I understand that there is no ##\varphi## dependency.
I don't understand why the field of ##\vec{A}## has to be parallel to the ##z## axis. What about ##d^{3} \overrightarrow{r^{\prime}}##??? Is there a way to show mathematically that the vector potential is independent of the two variables ##z\varphi##?
In general, I have problems identifying symmetries and using them correctly.
Magnetic flux density of an infinitely long hollow cylinder
The hollow cylinder is homogeneously traversed by the current ##I##. Calculate the magnetic flux ##\vec{B}(\vec{r})## as the curl of the vector potential ##\vec{A}(\vec{r})##.
$$
\begin{aligned}
\vec{A}(\vec{r}) & =\frac{\mu_{0}}{4 \pi} \int \limits_{V} \frac{\vec{j}\left(\overrightarrow{r^{\prime}}\right)}{\left|\vec{r}-\overrightarrow{r^{\prime}}\right|} d^{3} \overrightarrow{r^{\prime}} \\
\vec{j}(\vec{r}) & =j \vec{e}_{z}
\end{aligned}
$$
Use cylindrical coordinates ##\vec{r}=(\rho, \varphi, z)##. Due to the symmetry, we have:
$$
\vec{A}(\vec{r})=A(\rho, \varphi, z) \vec{e}_{z}=A(\rho) \vec{e}_{z}
$$
I don't understand why the field of ##\vec{A}## has to be parallel to the ##z## axis. What about ##d^{3} \overrightarrow{r^{\prime}}##??? Is there a way to show mathematically that the vector potential is independent of the two variables ##z\varphi##?
In general, I have problems identifying symmetries and using them correctly.
Magnetic flux density of an infinitely long hollow cylinder
The hollow cylinder is homogeneously traversed by the current ##I##. Calculate the magnetic flux ##\vec{B}(\vec{r})## as the curl of the vector potential ##\vec{A}(\vec{r})##.
$$
\begin{aligned}
\vec{A}(\vec{r}) & =\frac{\mu_{0}}{4 \pi} \int \limits_{V} \frac{\vec{j}\left(\overrightarrow{r^{\prime}}\right)}{\left|\vec{r}-\overrightarrow{r^{\prime}}\right|} d^{3} \overrightarrow{r^{\prime}} \\
\vec{j}(\vec{r}) & =j \vec{e}_{z}
\end{aligned}
$$
Use cylindrical coordinates ##\vec{r}=(\rho, \varphi, z)##. Due to the symmetry, we have:
$$
\vec{A}(\vec{r})=A(\rho, \varphi, z) \vec{e}_{z}=A(\rho) \vec{e}_{z}
$$
Last edited: