- #1
ycgoat
- 3
- 0
Homework Statement
Home work 3 Q1
Study the E
field in free space and a source-free region, E= (a + b)exp(-jkx), where a and b are nonzero real constants, and in the x,y plane respectively.
Does it satisfy Maxwell’s equations? If so, find the k and H fields . If not, explain why not.
Homework Equations
wave equation - dell^2 E + omega^2 mu epsilon E =0
Faraday's law - curl E = -j omega mu H
dispersion relation - k^2 = omega^2 mu epsilon
The Attempt at a Solution
Please excuse my lack of understanding I am a bit old for trying to get this degree.curl E = -bjkexp(-jkx) in the z direction,
= -j omega mu H
so H = [(b/(omega mu))exp(-jkx)]z = [(b/omega mu)cos(omeg t - kx)]z
for finding k using the wave formula I think I am to curl E twice and get
[-bk^2exp(-jkx)]z + k^2 ([a exp(-jkx)]x + [b exp(-jkx)]y) = 0
= exp(-jkz) ([k^2 a ]x + [k^2 b ]y + [-bk]z) = 0
then ([k^2 a ]x + [k^2 b ]y + [-bk]z) = 0
I feel like I am beating a dead horse here.