- #1
Tony1
- 17
- 0
How to prove this integral,
$$\int_{0}^{2\pi}\mathrm dt{\sin t\over \sin t+ i\sqrt{n+\cos^2 t}}={\pi\over 1+n}$$
$n \ne -1$
$i=\sqrt{-1}$
$$\int_{0}^{2\pi}\mathrm dt{\sin t\over \sin t+ i\sqrt{n+\cos^2 t}}={\pi\over 1+n}$$
$n \ne -1$
$i=\sqrt{-1}$